Research
Dr. Marco Foscato is a member of the In silico molecular exploration and design group at the Department of Chemistry.
Dr. Marco Foscato envisions a near future where computational chemistry tasks and computationally assisted molecular design are fully automated to impact maximally on discovery of functional molecules in general and transition-metal catalysts, in particular. To pursue this vision, he develops and apply cheminformatics tools that automate chemical and computational chemistry tasks. Dr. Foscato is the main developer and maintainer of the most versatile and generally applicable software package available for automated de novo design of molecules: De Novo OPTimization of In/organic Molecules (DENOPTIM). Notably, DENOPTIM is the first of its kind to have successfully designed, in a de novo and fully automatic fashion, functional transition metal compounds that were only later experimentally proven to possess the designed property (See Chem. Eur. J. 2018, 24, 5082).
Publications
Academic lecture
- Pogorilyy, Eduard; Foscato, Marco; Adamsen, Tom Christian Holm et al. (2025). Advancing PET Imaging with 45Ti: Synthesis and Characterization of the Ti-DOTA Complex . (external link)
- Foscato, Marco; Ekeli, Jonas Brattebø; Blanco, Christian O. et al. (2024). Automated de Novo Design of Homogeneous Catalysts: Experimentally Validated Multi-Factor Design Criteria. (external link)
- Himmelstrup, Jonas; Jensen, Vidar Remi; Foscato, Marco et al. (2024). Interplay Between Tridentate Pincer Molybdenum Catalysts and SmI2 in Ammonia Synthesis. (external link)
- Pogorilyy, Eduard; Roy, Tamal; Foscato, Marco et al. (2024). Exploring the Potential of 45Ti in PET Imaging, Formation and Assessment of the Ti-DOTA Complex. (external link)
- Roy, Tamal; Pogorilyy, Eduard; Kumarananthan, Chubina P. et al. (2024). Titanium-45-DOTA for PET-imaging . (external link)
- Ekeli, Jonas Brattebø; Foscato, Marco; Blanco, Christian O. et al. (2024). Enabling Automated de Novo Design of Catalysts: Experimentally Validated Multi-Factor Design Criteria for Olefin Metathesis. (external link)
- Foscato, Marco; Costamagna, Marcello; Grellscheid, David et al. (2024). Hypershape Recognition (HSR): A generalized framework for moment-based molecular similarity. (external link)
- Ekeli, Jonas Brattebø; Foscato, Marco; Blanco, Christian et al. (2023). Establishing Protocols for Automated De Novo Design of Olefin Metathesis Catalysts. (external link)
- Costamagna, Marcello; Foscato, Marco; Grellscheid, David et al. (2022). Taming cyclicity of Transition Metal Complexes in De Novo Design.. (external link)
- Foscato, Marco; Ekeli, Jonas Brattebø; Jensen, Vidar Remi et al. (2022). Protocols for Automated Evaluation of Olefin Metathesis Catalysts.. (external link)
- Foscato, Marco; Jensen, Vidar Remi; Fogg, Deryn Elizabeth (2019). Oxidation State Paradigms in Olefin Metathesis. (external link)
- Foscato, Marco (2019). Automated Computational Design of Catalysts. (external link)
- Foscato, Marco; Jensen, Vidar Remi (2018). Automated in silico design of homogeneous catalysts. (external link)
- Jensen, Vidar Remi; Engel, Julien; Smit, Wietse et al. (2017). Loss and Reformation of Ruthenium Alkylidene: Connecting Olefin Metathesis, Catalyst Deactivation, Regeneration, and Isomerization. (external link)
- Eliasson, Sondre H. Hopen; Foscato, Marco; Occhipinti, Giovanni et al. (2015). Automated Prediction of Optimized Ruthenium Catalysts for Olefin Metathesis. (external link)
- Eliasson, Sondre H. Hopen; Foscato, Marco; Occhipinti, Giovanni et al. (2015). Automated Prediction of Optimized Ruthenium Catalysts for Olefin Metathesis. (external link)
- Foscato, Marco; Occhipinti, Giovanni; Jensen, Vidar Remi et al. (2015). Automated design of realistic organometallic complexes and catalysts. (external link)
- Foscato, Marco; Occhipinti, Giovanni; Venkatraman, Vishwesh et al. (2014). Automated in Silico Design of Homogeneous Catalysts. (external link)
- Alsberg, Bjørn Kåre; Venkatraman, Vishwesh; Gupta, Mayuri et al. (2014). Evolutionary de novo design of absorbents for CO2 capture. (external link)
Poster
- Roy, Tamal; Pogorilyy, Eduard; Kumarananthan, Chubina P. et al. (2024). Unlocking the Potential of 45Ti for PET-imaging: The Formation and Evaluation of the Ti-DOTA Complex . (external link)
- Roy, Tamal; Pogorilyy, Eduard; Kumarananthan, Chubina P. et al. (2024). Titanium-45-DOTA for PET-imaging: L'enfant Terrible. (external link)
- Foscato, Marco; Occhipinti, Giovanni; Eliasson, Sondre Hilmar Hopen et al. (2023). Automated De Novo Design and Experimental Validation of Ru-Catalysts for Metathesis: Testing the Limits of a Correlation-Based Design Criterion. (external link)
- Occhipinti, Giovanni; Nascimento, Daniel L.; Ou, Xinrui et al. (2023). Multifaceted Impact of High Trans Influence/Effect in Ru-CAAC Olefin Metathesis Catalysts. (external link)
- Himmelstrup, Jonas; Jensen, Vidar Remi; Foscato, Marco et al. (2023). Interplay Between Tridentate Pincer Molybdenum Catalysts and SmI2 in Ammonia Synthesis. (external link)
- Foscato, Marco; Smit, Wietse; Occhipinti, Giovanni et al. (2019). Reviving Metathesis: Ethylene-Triggered Formation of Ruthenium-Alkylidene . (external link)
- Foscato, Marco; Bernhardt, Paul V.; Bilyi, Jessica K. et al. (2019). Automated design of Fe(II) spin crossover compounds: a successful story. (external link)
- Foscato, Marco; Occhipinti, Giovanni; Eliasson, Sondre H. Hopen et al. (2017). In Silico Evaluation of Olefin Metathesis Catalysts: the Importance of Monitoring More than One Elementary Reaction. (external link)
- Foscato, Marco; Engel, Julien; Smit, Wietse et al. (2017). Mechanisms Connecting Olefin Metathesis, Catalyst Deactivation, Regeneration, and Isomerization. (external link)
- Venkatraman, Vishwesh; Gupta, Mayuri; Foscato, Marco et al. (2015). Evolutionary de Novo Design of Absorbents for CO2 Capture. (external link)
- Foscato, Marco; Occhipinti, Giovanni; Venkatraman, Vishwesh et al. (2014). Automated Design of Organometallic Compounds from 3D Fragments. (external link)
- Abburu, Sailesh; Venkatraman, Vishwesh; Foscato, Marco et al. (2014). A de novo design approach to enhance the optical properties of azobenzenes. (external link)
- Venkatraman, Vishwesh; Foscato, Marco; Occhipinti, Giovanni et al. (2013). QSPR-Guided de novo Design of Organic Photovoltaic Dyes. (external link)
- Foscato, Marco; Occhipinti, Giovanni; Venkatraman, Vishwesh et al. (2013). Automatic building of transition metal compounds from fragments: a class-based approach. (external link)
- Venkatraman, Vishwesh; Occhipinti, Giovanni; Foscato, Marco et al. (2012). DENOPTIM: De novo OPTimization of Inorganic Molecules. (external link)
- Foscato, Marco; Ayala Ortega, Mauricio; Venkatraman, Vishwesh et al. (2012). DENOPTIM: De novo OPTimization of Inorganic Molecules. (external link)
Academic article
- Roy, Tamal; Pogorilyy, Eduard; Kumarananthan, Chubina Pathma et al. (2024). Synthesis and stability of the [<sup>45</sup>Ti]Ti-DOTA complex: en route towards aza-macrocyclic <sup>45</sup>Ti-based radiopharmaceuticals. (external link)
- Foscato, Marco; Occhipinti, Giovanni; Eliasson, Sondre Hilmar Hopen et al. (2024). Automated de Novo Design of Olefin Metathesis Catalysts: Computational and Experimental Analysis of a Simple Thermodynamic Design Criterion. (external link)
- Ekeli, Jonas Brattebø; Foscato, Marco; Blanco, Christian O. et al. (2024). Enabling Automation of de Novo Catalyst Design: An Experimentally Validated, Multifactor Design Metric for Olefin Metathesis. (external link)
- Occhipinti, Giovanni; Nascimento, Daniel L.; Foscato, Marco et al. (2022). The Janus face of high trans-effect carbenes in olefin metathesis: gateway to both productivity and decomposition. (external link)
- Nascimento, Daniel L.; Foscato, Marco; Occhipinti, Giovanni et al. (2021). Bimolecular Coupling in Olefin Metathesis: Correlating Structure and Decomposition for Leading and Emerging Ruthenium−Carbene Catalysts. (external link)
- Smit, Wietse; Foscato, Marco; Occhipinti, Giovanni et al. (2020). Ethylene-Triggered Formation of Ruthenium Alkylidene from Decomposed Catalyst. (external link)
- do Nascimento, Daniel Luis; Reim, Immanuel; Foscato, Marco et al. (2020). Challenging Metathesis Catalysts with Nucleophiles and Brønsted Base: Examining the Stability of State-of-the-Art Ruthenium Carbene Catalysts to Attack by Amines. (external link)
- Foscato, Marco; Venkatraman, Vishwesh; Jensen, Vidar Remi (2019). DENOPTIM: Software for Computational de Novo Design of Organic and Inorganic Molecules. (external link)
- Rufh, Stephanie A.; Goudreault, Alexandre Y.; Foscato, Marco et al. (2018). Rapid decomposition of olefin metathesis catalysts by a truncated N-heterocyclic carbene: Efficient catalyst quenching and n-heterocyclic carbene vinylation. (external link)
- Bernhardt, Paul V.; Bilyj, Jessica K.; Brosius, Victor et al. (2018). Spin Crossover in a Hexaamineiron(II) Complex: Experimental Confirmation of a Computational Prediction. (external link)
- Bailey, Gwendolyn A; Foscato, Marco; Higman, Carolyn S. et al. (2018). Bimolecular Coupling as a Vector for Decomposition of Fast-Initiating Olefin Metathesis Catalysts. (external link)
- Bailey, Gwendolyn A; Lummiss, Justin A M; Foscato, Marco et al. (2017). Decomposition of Olefin Metathesis Catalysts by Br?nsted Base: Metallacyclobutane Deprotonation as a Primary Deactivating Event. (external link)
- Engel, Julien; Smit, Wietse; Foscato, Marco et al. (2017). Loss and Reformation of Ruthenium Alkylidene: Connecting Olefin Metathesis, Catalyst Deactivation, Regeneration, and Isomerization. (external link)
- Venkatraman, Vishwesh; Gupta, Mayuri; Foscato, Marco et al. (2016). Computer-aided molecular design of imidazole-based absorbents for CO2 capture. (external link)
- Foscato, Marco; Deeth, Robert J.; Jensen, Vidar Remi (2015). Integration of ligand field molecular mechanics in Tinker. (external link)
- Foscato, Marco; Houghton, Benjamin J.; Occhipinti, Giovanni et al. (2015). Ring closure to form metal chelates in 3D fragment-based de novo design. (external link)
- Venkatraman, Vishwesh; Foscato, Marco; Jensen, Vidar Remi et al. (2015). Evolutionary de novo design of phenothiazine derivatives for dye-sensitized solar cells . (external link)
- Foscato, Marco; Venkatraman, Vishwesh; Occhipinti, Giovanni et al. (2014). Automated building of organometallic complexes from 3D fragments. (external link)
- Foscato, Marco; Occhipinti, Giovanni; Venkatraman, Vishwesh et al. (2014). Automated design of realistic organometallic molecules from fragments. (external link)
- Ferrario, Valerio; Foscato, Marco; Bert, Cynthia E. et al. (2013). Thermodynamic analysis of enzyme enantioselectivity: a statistical approach by means of new differential HybridMIF descriptors. (external link)
Academic literature review
Lecture
- Foscato, Marco (2019). Changing Oxidation State Paradigms in Ruthenium-Catalyzed Olefin Metathesis. (external link)
- Foscato, Marco (2017). Cheminformatics for the Design of Functional Transition Metal Compounds. (external link)
- Foscato, Marco; Engel, Julien; Smit, Wietse et al. (2017). Loss and Reformation of Ruthenium Alkylidene: Connecting Olefin Metathesis, Deactivation, Regeneration, and Isomerization.. (external link)
- Foscato, Marco; Occhipinti, Giovanni; Jensen, Vidar Remi (2016). Computational Design of Functional Organometallic Complexes. (external link)
- Venkatraman, Vishwesh; Gupta, Mayuri; Foscato, Marco et al. (2015). Evolutionary de novo design of absorbents for CO2 capture. (external link)
- Venkatraman, Vishwesh; Gupta, Mayuri; Foscato, Marco et al. (2015). Evolutionary de novo design of absorbents for CO2 capture. (external link)
Academic chapter/article/Conference paper
Doctoral dissertation
Projects
Led by Prof. Deyn Fogg, the WattCat project (Water-tolerant catalysis: Boosting chemical biology, medicine, and sustainable chemical manufacturing) aims to develop ruthenium-based olefin metathesis catalysts that enable challenging metathesis reactions in the presence of water.
Led by Prof. Vidar R. Jensen, the eHACS project (Escaping the Combinatorial Explosion: Expert-Enhanced Heuristic Navigation of Chemical Space) aims to integrate modern automated molecular design methods with knowledge-based expert guidance and machine learning. This project includes substantial development of DENOPTIM. Stay tuned for new and outstanding functionality!
e-Science for e-Ammonia
Led by Prof. Vidar R. Jensen, this project aims to develop methods for automated design of transition metal catalysts for the so-called e-ammonia process, i.e., ammonia production based on renewable electricity, dinitrogen and water. This project includes substantial development of DENOPTIM. Stay tuned for new and outstanding functionality!