Hjem
TargetRNA

Varselmelding

There has not been added a translated version of this content. You can either try searching or go to the "area" home page to see if you can find the information there
Publications

Selection of releveant publications from TargetRNA consortium members

Hovedinnhold

(1) Kovachka, S.; Panosetti, M.; Grimaldi, B.; Azoulay, S.; Di Giorgio, A.; Duca, M. Small Molecule Approaches to Targeting RNA. Nat Rev Chem 2024, 8 (2), 120–135. https://doi.org/10.1038/s41570-023-00569-9.

(2) Silvestri, I.; Manigrasso, J.; Andreani, A.; Brindani, N.; Mas, C.; Reiser, J.-B.; Vidossich, P.; Martino, G.; McCarthy, A. A.; De Vivo, M.; Marcia, M. Targeting the Conserved Active Site of Splicing Machines with Specific and Selective Small Molecule Modulators. Nat Commun 2024, 15 (1), 4980. https://doi.org/10.1038/s41467-024-48697-0.

(3) Bains, J. K.; Qureshi, N. S.; Ceylan, B.; Wacker, A.; Schwalbe, H. Cell-Free Transcription-Translation System: A Dual Read-out Assay to Characterize Riboswitch Function. Nucleic Acids Res 2023, 51 (15), e82. https://doi.org/10.1093/nar/gkad574.

(4) Müller, J.; Klein, R.; Tarkhanova, O.; Gryniukova, A.; Borysko, P.; Merkl, S.; Ruf, M.; Neumann, A.; Gastreich, M.; Moroz, Y. S.; Klebe, G.; Glinca, S. Magnet for the Needle in Haystack: “Crystal Structure First” Fragment Hits Unlock Active Chemical Matter Using Targeted Exploration of Vast Chemical Spaces. J. Med. Chem. 2022. https://doi.org/10.1021/acs.jmedchem.2c00813.

(5) Martin, C.; Bonnet, M.; Patino, N.; Azoulay, S.; Di Giorgio, A.; Duca, M. Design, Synthesis, and Evaluation of Neomycin-Imidazole Conjugates for RNA Cleavage. Chempluschem 2022, 87 (11), e202200250. https://doi.org/10.1002/cplu.202200250.

(6) He, J.; Nittinger, E.; Tyrchan, C.; Czechtizky, W.; Patronov, A.; Bjerrum, E. J.; Engkvist, O. Transformer-Based Molecular Optimization beyond Matched Molecular Pairs. Journal of Cheminformatics 2022, 14 (1), 18. https://doi.org/10.1186/s13321-022-00599-3.

(7) Hamway, Y.; Zimmermann, K.; Blommers, M. J. J.; Sousa, M. V.; Häberli, C.; Kulkarni, S.; Skalicky, S.; Hackl, M.; Götte, M.; Keiser, J.; da Costa, C. P.; Spangenberg, T.; Azzaoui, K. Modulation of Host–Parasite Interactions with Small Molecules Targeting Schistosoma Mansoni microRNAs. ACS Infect. Dis. 2022, 8 (10), 2028–2034. https://doi.org/10.1021/acsinfecdis.2c00360.

(8) Sreeramulu, S.; Richter, C.; Berg, H.; Wirtz Martin, M. A.; Ceylan, B.; Matzel, T.; Adam, J.; Altincekic, N.; Azzaoui, K.; Bains, J. K.; Blommers, M. J. J.; Ferner, J.; Fürtig, B.; Göbel, M.; Grün, J. T.; Hengesbach, M.; Hohmann, K. F.; Hymon, D.; Knezic, B.; Martins, J.; Mertinkus, K. R.; Niesteruk, A.; Peter, S. A.; Pyper, D. J.; Qureshi, N. S.; Scheffer, U.; Schlundt, A.; Schnieders, R.; Stirnal, E.; Sudakov, A.; Tröster, A.; Vögele, J.; Wacker, A.; Weigand, J. E.; Wirmer-Bartoschek, J.; Wöhnert, J.; Schwalbe, H. Exploring the Druggability of Conserved RNA Regulatory Elements in the SARS-CoV-2 Genome. Angew Chem Int Ed Engl 2021. https://doi.org/10.1002/anie.202103693.

(9) Rekand, I. H.; Brenk, R. DrugPred_RNA—A Tool for Structure-Based Druggability Predictions for RNA Binding Sites. J. Chem. Inf. Model. 2021, 61 (8), 4068–4081. https://doi.org/10.1021/acs.jcim.1c00155.

(10) Panchal, V.; Brenk, R. Riboswitches as Drug Targets for Antibiotics. Antibiotics 2021, 10 (1), 45. https://doi.org/10.3390/antibiotics10010045.

(11) Maucort, C.; Vo, D. D.; Aouad, S.; Charrat, C.; Azoulay, S.; Di Giorgio, A.; Duca, M. Design and Implementation of Synthetic RNA Binders for the Inhibition of miR-21 Biogenesis. ACS Med Chem Lett 2021, 12 (6), 899–906. https://doi.org/10.1021/acsmedchemlett.0c00682.

(12) Marcia, M.; Manigrasso, J.; De Vivo, M. Finding the Ion in the RNA-Stack: Can Computational Models Accurately Predict Key Functional Elements in Large Macromolecular Complexes? J. Chem. Inf. Model. 2021, 61 (6), 2511–2515. https://doi.org/10.1021/acs.jcim.1c00572.

(13) Manigrasso, J.; Marcia, M.; De Vivo, M. Computer-Aided Design of RNA-Targeted Small Molecules: A Growing Need in Drug Discovery. Chem 2021, 7 (11), 2965–2988. https://doi.org/10.1016/j.chempr.2021.05.021.

(14) Lundquist, K. P.; Panchal, V.; Gotfredsen, C. H.; Brenk, R.; Clausen, M. H. Fragment-Based Drug Discovery for RNA Targets. ChemMedChem 2021, 16 (17), 2588–2603. https://doi.org/10.1002/cmdc.202100324.

(15) He, J.; You, H.; Sandström, E.; Nittinger, E.; Bjerrum, E. J.; Tyrchan, C.; Czechtizky, W.; Engkvist, O. Molecular Optimization by Capturing Chemist’s Intuition Using Deep Neural Networks. Journal of Cheminformatics 2021, 13 (1), 26. https://doi.org/10.1186/s13321-021-00497-0.

(16) Troelsen, N. S.; Shanina, E.; Gonzalez-Romero, D.; Danková, D.; Jensen, I. S. A.; Śniady, K. J.; Nami, F.; Zhang, H.; Rademacher, C.; Cuenda, A.; Gotfredsen, C. H.; Clausen, M. H. The 3F Library: Fluorinated Fsp3-Rich Fragments for Expeditious 19F NMR Based Screening. Angewandte Chemie International Edition 2020, 59 (6), 2204–2210. https://doi.org/10.1002/anie.201913125.

(17) Manigrasso, J.; Chillón, I.; Genna, V.; Vidossich, P.; Somarowthu, S.; Pyle, A. M.; De Vivo, M.; Marcia, M. Visualizing Group II Intron Dynamics between the First and Second Steps of Splicing. Nat Commun 2020, 11 (1), 2837. https://doi.org/10.1038/s41467-020-16741-4.

(18) Blaschke, T.; Arús-Pous, J.; Chen, H.; Margreitter, C.; Tyrchan, C.; Engkvist, O.; Papadopoulos, K.; Patronov, A. REINVENT 2.0: An AI Tool for De Novo Drug Design. J. Chem. Inf. Model. 2020, 60 (12), 5918–5922. https://doi.org/10.1021/acs.jcim.0c00915.

(19) Binas, O.; de Jesus, V.; Landgraf, T.; Völklein, A. E.; Martins, J.; Hymon, D.; Berg, H.; Bains, J. K.; Biedenbänder, T.; Fürtig, B.; Gande, S. L.; Niesteruk, A.; Oxenfarth, A.; Qureshi, N. S.; Schamber, T.; Schnieders, R.; Tröster, A.; Wacker, A.; Wirmer-Bartoschek, J.; Martin, M. A. W.; Stirnal, E.; Azzaoui, K.; Blommers, M. J. J.; Richter, C.; Sreeramulu, S.; Schwalbe, H. 19F-NMR-Based Fragment Screening for 14 Different Biologically Active RNAs and 10 DNA and Protein Counter-Screens. Chembiochem 2020. https://doi.org/10.1002/cbic.202000476.

(20) Arús-Pous, J.; Patronov, A.; Bjerrum, E. J.; Tyrchan, C.; Reymond, J.-L.; Chen, H.; Engkvist, O. SMILES-Based Deep Generative Scaffold Decorator for de-Novo Drug Design. Journal of Cheminformatics 2020, 12 (1), 38. https://doi.org/10.1186/s13321-020-00441-8.

(21) Hansen, K. Ø.; Andersen, J. H.; Bayer, A.; Pandey, S. K.; Lorentzen, M.; Jørgensen, K. B.; Sydnes, M. O.; Guttormsen, Y.; Baumann, M.; Koch, U.; Klebl, B.; Eickhoff, J.; Haug, B. E.; Isaksson, J.; Hansen, E. H. Kinase Chemodiversity from the Arctic: The Breitfussins. J. Med. Chem. 2019, 62 (22), 10167–10181. https://doi.org/10.1021/acs.jmedchem.9b01006.

(22) Segler, M. H. S.; Kogej, T.; Tyrchan, C.; Waller, M. P. Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks. ACS Cent. Sci. 2018, 4 (1), 120–131. https://doi.org/10.1021/acscentsci.7b00512.

(23) Wehler, T.; Brenk, R. Structure-Based Discovery of Small Molecules Binding to RNA. In RNA Therapeutics; Topics in Medicinal Chemistry; Springer, Cham, 2017; pp 47–77. https://doi.org/10.1007/7355_2016_29.

(24) Wang, H.; Mann, P. A.; Xiao, L.; Gill, C.; Galgoci, A. M.; Howe, J. A.; Villafania, A.; Barbieri, C. M.; Malinverni, J. C.; Sher, X.; Mayhood, T.; McCurry, M. D.; Murgolo, N.; Flattery, A.; Mack, M.; Roemer, T. Dual-Targeting Small-Molecule Inhibitors of the Staphylococcus Aureus FMN Riboswitch Disrupt Riboflavin Homeostasis in an Infectious Setting. Cell Chemical Biology 2017, 24 (5), 576-588.e6. https://doi.org/10.1016/j.chembiol.2017.03.014.

(25) Steinert, H.; Sochor, F.; Wacker, A.; Buck, J.; Helmling, C.; Hiller, F.; Keyhani, S.; Noeske, J.; Grimm, S.; Rudolph, M. M.; Keller, H.; Mooney, R. A.; Landick, R.; Suess, B.; Fürtig, B.; Wöhnert, J.; Schwalbe, H. Pausing Guides RNA Folding to Populate Transiently Stable RNA Structures for Riboswitch-Based Transcription Regulation. eLife 2017, 6, e21297. https://doi.org/10.7554/eLife.21297.

(26) Rekand, I.; Brenk, R. Design of Riboswitch Ligands, an Emerging Target Class for Novel Antibiotics. Fut. Med. Chem. 2017, 9 (14), 1649–1662.

(27) De Vivo, M.; Masetti, M.; Bottegoni, G.; Cavalli, A. Role of Molecular Dynamics and Related Methods in Drug Discovery. Journal of Medicinal Chemistry 2016, 59 (9), 4035–4061. https://doi.org/10.1021/acs.jmedchem.5b01684.

(28) Zhao, C.; Rajashankar, K. R.; Marcia, M.; Pyle, A. M. Crystal Structure of Group II Intron Domain 1 Reveals a Template for RNA Assembly. Nat Chem Biol 2015, 11 (12), 967–972. https://doi.org/10.1038/nchembio.1949.

(29) Tran, T. P. A.; Vo, D. D.; Di Giorgio, A.; Duca, M. Ribosome-Targeting Antibiotics as Inhibitors of Oncogenic microRNAs Biogenesis: Old Scaffolds for New Perspectives in RNA Targeting. Bioorganic & Medicinal Chemistry 2015, 23 (17), 5334–5344. https://doi.org/10.1016/j.bmc.2015.07.062.

(30) Pedrolli, D.; Langer, S.; Hobl, B.; Schwarz, J.; Hashimoto, M.; Mack, M. The ribB FMN Riboswitch from Escherichia Coli Operates at the Transcriptional and Translational Level and Regulates Riboflavin Biosynthesis. FEBS J. 2015, 282 (16), 3230–3242. https://doi.org/10.1111/febs.13226.

(31) Pedrolli, D. B.; Kühm, C.; Sévin, D. C.; Vockenhuber, M. P.; Sauer, U.; Suess, B.; Mack, M. A Dual Control Mechanism Synchronizes Riboflavin and Sulphur Metabolism in Bacillus Subtilis. Proc. Natl. Acad. Sci. U.S.A. 2015, 112 (45), 14054–14059. https://doi.org/10.1073/pnas.1515024112.

(32) Daldrop, P.; Brenk, R. Structure-Based Virtual Screening for the Identification of RNA-Binding Ligands. Methods Mol. Biol. 2014, 1103, 127–139.

(33) Reining, A.; Nozinovic, S.; Schlepckow, K.; Buhr, F.; Furtig, B.; Schwalbe, H. Three-State Mechanism Couples Ligand and Temperature Sensing in Riboswitches. Nature 2013, 499 (7458), 355–359. https://doi.org/10.1038/nature12378.

(34) Pedrolli, D. B.; Matern, A.; Wang, J.; Ester, M.; Siedler, K.; Breaker, R.; Mack, M. A Highly Specialized Flavin Mononucleotide Riboswitch Responds Differently to Similar Ligands and Confers Roseoflavin Resistance to Streptomyces Davawensis. Nucleic Acids Research 2012, 40 (17), 8662–8673. https://doi.org/10.1093/nar/gks616.

(35) Marcia, M.; Pyle, A. M. Visualizing Group II Intron Catalysis through the Stages of Splicing. Cell 2012, 151 (3), 497–507. https://doi.org/10.1016/j.cell.2012.09.033.

(36) Daldrop, P.; Reyes, F. E.; Robinson, D. A.; Hammond, C. M.; Lilley, D. M.; Batey, R. T.; Brenk, R. Novel Ligands for a Purine Riboswitch Discovered by RNA-Ligand Docking. Chem. Biol. 2011, 18 (3), 324–335.

(37) Ott, E.; Stolz, J.; Lehmann, M.; Mack, M. The RFN Riboswitch of Bacillus Subtilis Is a Target for the Antibiotic Roseoflavin Produced by Streptomyces Davawensis. RNA Biol 2009, 6 (3), 276–280. https://doi.org/8342 [pii].

(38) Schwalbe, H.; Buck, J.; Furtig, B.; Noeske, J.; Wohnert, J. Structures of RNA Switches: Insight into Molecular Recognition and Tertiary Structure. Angewandte Chemie. International Edition in English 2007, 46 (8), 1212–1219.

(39) Jahnke, W.; Flörsheimer, A.; Blommers, M. J. J.; Paris, C. G.; Heim, J.; Nalin, C. M.; Perez, L. B. Second-Site NMR Screening and Linker Design. Curr Top Med Chem 2003, 3 (1), 69–80. https://doi.org/10.2174/1568026033392778.

(40) Gotfredsen, C. H.; Schultze, P.; Feigon, J. Solution Structure of an Intramolecular Pyrimidine−Purine−Pyrimidine Triplex Containing an RNA Third Strand. J. Am. Chem. Soc. 1998, 120 (18), 4281–4289. https://doi.org/10.1021/ja973221m.