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Renewables 2017

Capacity growth (GW)

1200

1000

800

600

400

200

90%
S

80%

70%

60%

50%

40%

30%

0%
1999-2004 2005-10 201-16 2017-22

s Additional - accelerated
case

= Others

I Hydropower
Solar PV

Wind

-0-9% from wind and solar PV
(right axis)

ieal



Capacity factor

| Renewables ||| Conventional |
120
— 100 -——--—--—---—-——-—--—--——-----------i --------------------------
. reliable base load L] .
A BO = o i e o e *.- ...... - ST SO
; :
Q
E e
= =
=40 | L
3 a . "
L
0 ' ¢ ¢ , ; ¢
Y N @ @ Y s\ N4 N 23 A S A N
& £ &£ T & & &£ & & & &
N &€ & A . Y & o N @) ]
o O QO N S @ & @ < &
& S S 5
o) & & o
S
b &

Life-cycle

2,000
1,750
1,500
1,250
1,000

750

500

250

Life Cycle Greenhouse Gas Emissions [g CO, eq / kWh]

-1,000

-1,250

-1,500

analysis - IPCC

Electricity Generation Technologies Powered by Renewable Resources

Maximum

75" Percentile

Median — I
25" Percentile —
Minimum =—
Single Estimates — @
with CCS

@ Biopower |||

Photovoltaics |||
Hydropower

Ocean Energy
Wind Energy

Geothermal Energy

Concentrating Solar Power |

Electricity Generation Technologies
Powered by Non-Renewable Resources

MNuclear Energy
Matural Gas

oil

Coal

= Avolded Emisslons, no Removal of GHGs from the /

rtagevernututas rate ou Glimate chanee

29.01.2019

(3 4

(3 4




29.01.2019

Land use km2/TWh
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Geothermal energy

« Thermal energy in the earth

« The thermal energy in the crust
(<1% of earth’s volume)
corresponds to 9 million times
annual energy production

« Temperature increases on
average 25-30°C per km depth
on the continents (large
regional differences)
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Geothermal heat and power

» Mature technology for heat and
power — Commercial power
production in Larderello for more
than 100 years
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Recent developments - Kenya

| Ehe Xetw ork Times E= e KENYA i I\
Geothermal Energy Grosos in Kenya ~ \

Currently geothermal accounts for 28% of f“ﬁT:::: ““
grid capacity. A a ]
-. t - n; vo Litom _
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Location of geothermal fields and prospects
Along the axial region of Kenyan rift [Mangi, 2017]
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e Geothermal capacity: 13.2 GW
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Geothermal energy production 90
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Risk and cost during different stages of geothermal development (1 4 J
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Short summary
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Potential
IEA Roadmap vision of geothermal IEA Roadmap vision of direct use of geothermal
power production by region heat by region, excluding geothermal heat pumps
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*  More than half of the projected increase from EGS resources
»  Substantially more research, development and demonstration needed
Source: IEA Technology Roadmap: Geothermal heat and power, 2011
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Supercritical resources
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SiGS project (2019-2023) \ 4
Research example 1 (UiB-Ml, ISOR, Landsvirkjun, 250350 C resersoi

Equ inOI") Low permeability rock
Objective: Testing of the hypotheses of enhanced fluid Downflow cooling

convection due to thermal deformation of fractures in

superheated and supercritical systems.

Advance understanding of superheated and supercritical

geothermal systems:

. Develop conceptual and numerical model of the coupled
thermal, hydraulic and mechanical processes in the deep
roots of a supercritical system and determine the
significant processes for heat transfer

. Develop numerical model to investigate formation response
to drilling fluids in superheated geothermal systems

Data

. Hellisheidi (superheated conditions)

*  Krafla (2.1 km depth, 450°C steam)

+ IDDP-2 Reykjanes (4.7 km depth, 535°C est. bottomhole,
supercritical cond.; thermal stimulation performed; flow test

Steam zone

Permeability fractures
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April 2019) Image source: ISOR
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EGS («Enhanced Geothermal Systems»)

Enhancement of high-temperature geothermal
reservoirs with low water content and/or
permeabilty through hydraulic stimulation.

Europe
* Power plants

— Insheim, Germany

— Landau, Germany

— Soultz-sous-Foréts, France
* Heat plants

— Rittershoffen

Approx. 10 plants under development in Europe.
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Enhanced Geothermal System — Soultz, France
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ANIGMA project (2015-201 9) DY

Research example 2 (UiB-GEO, UiB-Ml)

Objective: Develop a fully integrated approach

to the characterization, modelling and

simulation of fractured geothermal basement ,‘ﬁ
reservoirs. nes2

Improved understanding of geothermal .
reservoirs by:
1. Allowing geologists and mathematicians
to work on realistic data simultaneously
2. By-product: Domain-specific research to
facilitate communication
— Improved geological description of
fractured rocks ==
— New simulation methods for energy ahsenaen
production in these environments

The Research Council

Data extraction

Interpretation

Simulation

. . (L 4 J
ERIS project (2017-2021)

Research example 3 (UiB-MI, NORSAR, iSOR, INGV,
Equinor, HS Orka, Imperial College)

Obijective: complement the expertise of the geothermal energy
sector in exploitation of unconventional geothermal resources by
developing new numerical models and data interpretation
workflows that can identify governing mechanisms and
forecast reservoir response to stimulation

Advance the geOthermaI energy research field by deVelOping Hydraulic stimulation of fractured geothermal reservoir

+  Improved numerical models for slip along faults accounting for ~ [Uear Berre, Keilegavien, Geophys.Res. Let., 2017]
dynamic friction.

*  Improved numerical models for assessing thermal stimulation of
fractured geothermal reservoirs.

*  New monitoring data interpretation workflows integrated with
numerical modelling for identification and characterization of
active fracture clusters based on case studies.

*  Anew framework for data-driven numerical modelling of
geothermal reservoir stimulation.

Thermal stimulation [Stefansson, Berre, Keilegavlen,
The Research Council Paluszny. Unpublished, 2019]

Next step: Simulation of injection at the Reykjanes geothermal field.
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Geothermal energy research — University of Bergen ¢ ¥ ©

De-risking and efficient and sustainable production of
geothermal resources (hydrothermal, EGS, supercritical)
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Geothermal Ener

(2009)@®
Reservoir characterization, modeling and simulation o
for optimal development solutions and production Wge

[ :
Effective reservoir stimulation to ensure commercial Petroleum __Q
flow rates without negative environmental impact (1980)

Efficient methods for geological and geophysical
characterization

Image source:: Statoil
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