Conference on Brazilian-Norwegian Energy Research 28 October 2020

The Ocean as a Solution for Climate Change: 5 Opportunities for Action

The High Level Panel for a Sustainable Ocean Economy.

Finn Gunnar Nielsen professor Geophysical Institute Bergen Offshore Wind Centre

ittps://www.uib.no/en/bow

UNIVERSITETET I BERGEN

High Level Panel for a Sustainable Ocean

Economy (HLP)

- Established September 2018
- Consists of the presidents or prime ministers of Australia, Canada, Chile, Fiji, Ghana, Indonesia, Jamaica, Japan, Kenya, Mexico, Namibia, Norway, Palau and Portugal.
- Supported by an Expert Group, Advisory Network and Secretariat that assist with analytical work, communications and stakeholder engagement.
- Secretariat at World Resources Institute.
- <u>http://www.oceanpanel.org/climate</u>

Ove Hoegh-Guldberg

EXPERT AUTHORS:

Ken Caldeira, Thierry Chopin, Steve Gaines, Peter Haugan, Mark Hemer, Jennifer Howard, Manaswita Konar, Dorte Krause-Jensen, Elizabeth Lindstad, Catherine E. Lovelock, Mark Michelin, Finn Gunnar Nielsen, Eliza Northrop, Robert Parker, Joyashree Roy, Tristan Smith, Shreya Some, and Peter Tyedmers

The Ocean: From Victim to Solution

Actions considered

CO₂ mitigation potential from:

- 1. Ocean-based renewable energy
- 2. Ocean-based transport
- 3. Coastal and marine ecosystems
- 4. Fishery, aquaculture and dietary shifts
- 5. Carbon storage in the seabed

Figure ES-1. Ocean-based Mitigation Options Explored in This Report and Associated Annual Mitigation Potential in 2050

The mitigation gap

Source: Adapted from UNEP 2018, Climate Action Tracker (2018).

FGN oct 2020

SIDE 5

Life-cycle emissions

Table 4. Estimated Life-Cycle Emissions of Energy Generation Technologies

ENERGY TECHNOLOGY	LIFECYCLE CARBON EMISSIONS KG CO ₂ E/KWH	LIFECYCLE CARBON EMISSION RELATIVE TO CURRENT MIX (%)
Coal	1.0 (0.67-1.7)	217
Natural Gas	0.476 (0.31-0.99)	103
Current mix	0.46	-
Solar PV	0.054 (0.019-0.2)	12
Concentrated Solar Power	0.025 (0.007-0.24)	5.4
Nuclear	0.016 (0.008-0.22)	3.5
Onshore wind	0.012 (0.002-0.088)	2.6
Offshore wind	0.012 (0.005-0.024)	2.6
Ocean	0.008 (0.002-0.022)	1.7
0		

Source: OpenEl, 2019

FGN oct Note: Bracketed values represent the range of reported emissions.

Ocean based renewable energy. ••• = Offshore wind (OSW) + Ocean Renewables (ORE)

Basis:

- Electricity and heat generation: 25% of GHG emissions
- Electricity demand increases significantly.
 - Gross el demand in 2050 estimated to 47 000 TWh/y.
- Mitigation potential:
 - 1.0 kg CO_{2e}/kWh by replacing
 - 0.46 kg CO_{2e}/kWh global average electricity generation.

The CO₂ mitigation potential

Figure ES-4. Contribution of Five Ocean-based Climate Action Areas to Mitigating Climate Change in 2050 (Maximum GtCO_e)

Notes: * To stay under a 1.5°C change relative to pre-industrial levels

FGN oct 2020

SIDE 9

Hoegh-Guldberg. O., et al. 2019. "The Ocean as a Solution to Climate Change: Five Opportunities for Action." Report. Washington, DC: World Resources Institute. Available online at http://www.oceanpanel.org/climate

Energy resource estimates

Figure 5. Geophysical, Technical, Economic and Social/Political Potential of Wind or other Energy Resources across the Global Ocean

Source: Adapted from Hoegh-Guldberg et al. 2019.

FGN oct 2020 SIDE 11

Impact on SDGs

Figure ES-5. Summary of Wider Impact of Ocean-based interventions on Sustainable Development Dimensions

Source: Authors

FGN oct 2020

UK gov. cost estimates for 2025

FGN oct 2020

SIDE 13

Source: CarbonBrief 27.08.2020.

Numbers from UK dept of Business, Energy and Industrial Strategy, Aug 2020

UK gov. cost estimates for 2040 140 125 120 100 82 80 £/MWh 60 44 40 40 33 20 0 CCGT H Class Offshore Wind Large-Scale Solar CCGT + CCUS Post Onshore Wind Combustion (NOAK) Pre-development Construction Fixed O+M

Fuel

CO2 Capture and Storage Decomissioning and waste

ANVERST, PS

Source: UK dept of Business, Energy and Industrial Strategy, Aug 2020

Carbon

FGN oct 2020

SIDE 14

Variable O+M

PRESENT DEPLOYMENT RATE TOO SLOW. NEEEDS:

- Incentives (e.g. carbon taxes)
- Marine spatial planning and legislation incl. grid
- National targets and strategies
- Stable economic and regulatory framework

Research and technology needs

- Understand ecological impacts
- Map global potential
- Explore benefits of colocation
- Explore potential for ocean base solar PV

- Advance storage capacity
- Improve performance and reliability while reducing costs
- Develop deep water technologies
- Piloting

Summary

- Significant GHG mitigation potential from Ocean renewables.
- **OSW:** Mature, significant up-scaling expected.
- **Tidal stream and range:** Technology available, geographical limited.
- Waves: Large potential, Several systems tested.
- Floating solar: From water reservoirs to ocean area.
- Ocean thermal: Tropical area.
- Salinity gradient: Laboratory scale.
- ACTIVE POLICIES NEEDED

UNIVERSITY OF BERGEN Bergen Offshore Wind Centre

Wide range of estimates

Table 3. Summary of Energy Scenarios Reviewed for Ocean-based Renewable Energy

SCENARIO	OSW GENERATION (TWH/YR)	ORE GENERATION (TWH/YR)
2018 (30) (Bahar, 2019)	53	1.2
2050 Reference (50). Same fraction as current, for assumed 2050 electricity demand of 50,000 TWh	112	2.5
2050 Drawdown Reference (50) (Project Drawdown, 2017)	57.2	2.1
2050 IEA WEO 2009 (45) (IEA, 2009)	555	25
2050 Teske (Reference (45) (Teske et al. 2011)	805	25
2050 IEA RTS (40) (IEA, 2017)	651	108
2050 ETP BLUE MAP (14) (IEA, 2010)	1568	133
2050 IEA 2DS (13) (IEA, 2017)	1436	536
2050 Teske E[R] (10) (Teske et al. 2011)	2711	678
2050 IEA B2DS (4.7) (IEA, 2017)	1531	637
2050 Teske Adv E[R] (3.7) (Teske et al. 2011)	3469	1943
2050 DRAWDOWN Plausible (Project Drawdown, 2017)	2078	1486
2050 DRAWDOWN (Project Drawdown, 2017)	3029	1745
2050 DRAWDOWN Optimum (Project Drawdown, 2017)	3159	1823
2050 OES Vision (OES, 2017)	-	1051
2050 IRENA (IRENA, 2018a)	1822	

FGN oct 2020

Source: Authors

SIDE

Note: OSW = Offshore wind; ORE = Ocean-based renewable energy.