BERGEN ENERGY LAB - 18.09.2019 THE RACE TOWARDS THE HYDROGEN SOCIETY IN JAPAN

Summer intern at Renewable Energy Institute (REI)

► GFI scholarship

► Greenstat scholarship

Why hydrogen?

Energy resource scarcity (geography)

The least self-sufficient among the developed economies

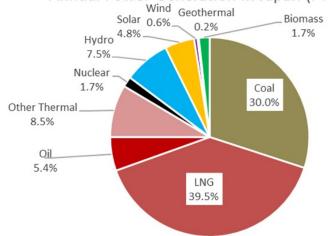
Strong dependency on fossil fuel imports:

Largest importer of LNG

Second-largest importer of coal

Third-largest net crude oil importer

Economic competitiveness


High energy prices

Low-emission society

2010 2015 1,007 << TOTAL POWER GENERATED >> 885 (billion kilowatt-hours) Natural gas 29.3% Coal 44.0% 25.0 Oil, propane, other gases 7.5 31.6 8.5 Hydroelectric Solar, wind, 9.0 other renewables 9.6 1.1% 28.6% Nuclear Nuclear 1.1%

Source: Federation of Electric Power Companies of Japan THE WALL STREET JOURNAL.

Annual Power Generation in Japan (FY2016)

Source: Estimated by ISEP using METI data

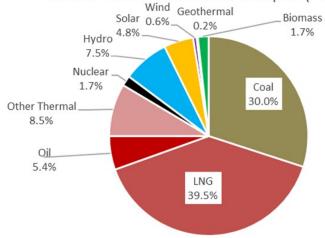
2011 Fukushima disaster: New energy strategy

Nuclear power capacity shut down:

Pre-2011: 30%

Post-2011: 1%

Now increasing: 20-22% by 2030


Self-sufficiency: 6% in 2012

Today: 89% import to cover primary energy demand - oil, gas and coal

2010 2015 1,007 << TOTAL POWER GENERATED >> 885 (billion kilowatt-hours) Natural gas 29.3% Coal 44.0% 25.0 Oil, propane, other gases 7.5 31.6 8.5 Hydroelectric Solar, wind, 9.0 other renewables 9.6 1.1% 28.6% Nuclear Nuclear 1.1%

Source: Federation of Electric Power Companies of Japan THE WALL STREET JOURNAL.

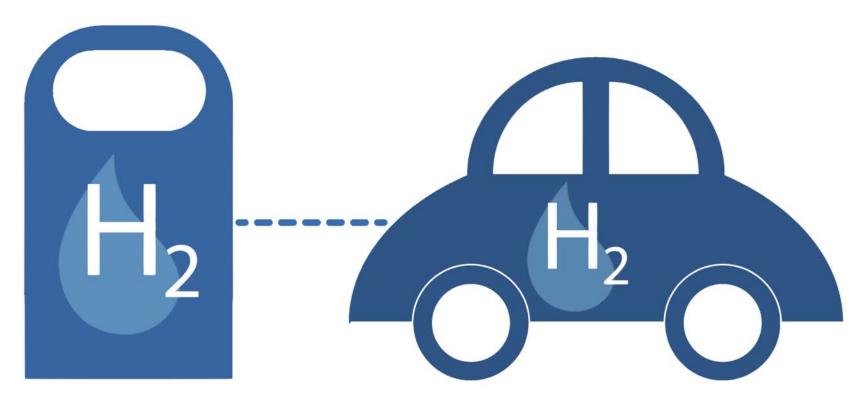
Annual Power Generation in Japan (FY2016)

Modest growth in hydropower and renewables

Fukushima disaster:

2012 FiT system: increase in renewables (solar)

New energy strategy

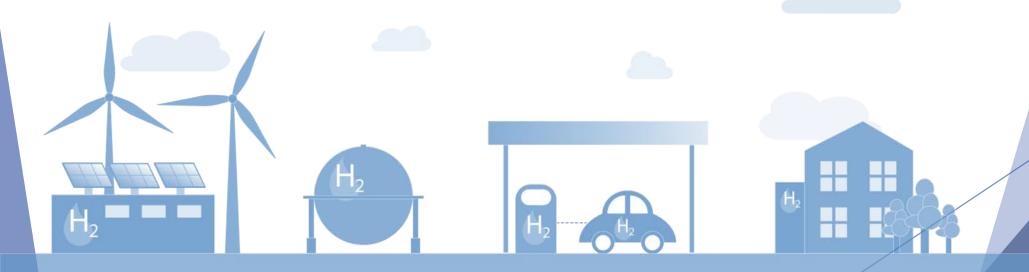

Renewable electricity generation in Japan: 18% → 22-24% by 2030

World frontrunner in energy efficiency:

One of the lowest energyintensive economies

Energy-conscious population

Source: Estimated by ISEP using METI data


Hydrogen society - can it be done?

«Hydrogen with a low-carbon footprint has the potential to facilitate significant reductions in energy-related CO₂ emissions and to contribute to limiting global temperature rise to 2°C»

Benefits of hydrogen

- Flexible energy carrier
 - ► Can be produced locally from renewables solution for intermittency issues
 - ► Can effectively be transformed into energy forms for diverse end-use applications
- Green hydrogen (no carbon footprint): electrolysis of water driven by renewables
- Use: Energy storage, long distance transport and clean energy generation

«The most successful fuel cell commercialization program in the world»

ENE-FARM:

Residential fuel cell cogeneration system

Hydrogen is extracted from natural gas and reacts with oxygen to generate electricity

Surplus heat used for heating water

► System energy efficiency: 95%

▶ Power grid: 35-40%

 Collaboration between Panasonic and Tokyo gas

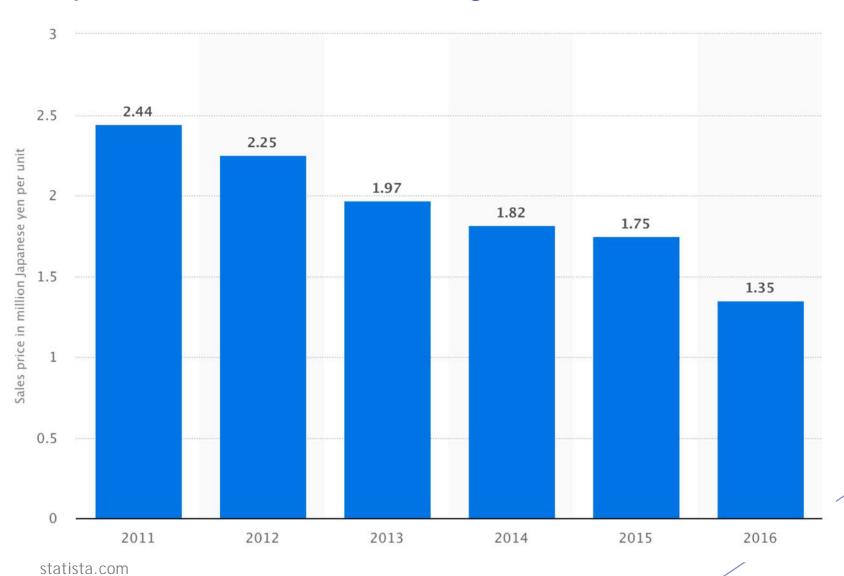
▶ 1999: funding for fuel cell research

▶ 2005: Launch of demonstration program of 3,300 ENE-FARM units

Government support

▶ 2016: subsidies covered half of the ENE-FARM unit costs

ENE-FARM installations have doubled annually


▶ 2017: 120,000 units

▶ 2020: 300,000 units

Now: cheaper, smaller and more efficient

Sales price of ENE-FARM systems (2011-2016)

ENE-FARM: success going abroad

Panasonic R&D-center in Germany in 2011

> Develop fuel cells for the European market

Existing gas infrastructure

Clean fuel cells: generate power directly from H₂

► Hydrogen infrastructure needed to support the next generation of residential fuel cells

Hydrogen in transport

Hydrogen in transport

- Ministry of Economy, Trade and Industry (METI): 2040 roadmap towards the hydrogen society
- ▶ Japan H₂ Mobility (JHyM): collaboration between 11 companies, including Toyota, Air Liquide Japan and Development Bank of Japan
 - ▶ Accelerate market uptake of hydrogen vehicles → infrastructure development

Hydrogen economy

► Barriers:

Cost of hydrogen production

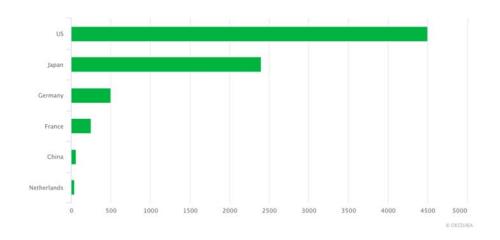
Cost of operating fuelling stations

> Also seen here in Norway: Hyop closing down 5 stations after 7 years - 2 left in Norway

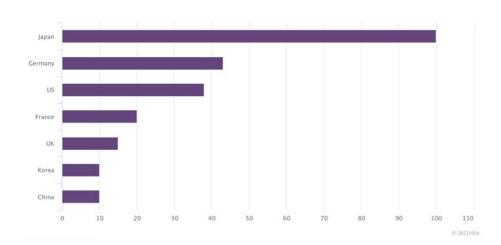
Drivers

- Infrastructure: fuelling stations
- Increase attraction of hydrogen vehicles
- Increase population knowledge

Hydrogen museum to educate the population...


Tokyo 2020 Olympics

- ► Tokyo Metropolitan Government: realize hydrogen society for the 2020 Tokyo Olympic games.
- ► Tokyo Metropolitan Government: realize hydrogen society for the 2020 Tokyo Olympic games.
- Olympic villages and means of transportation powered by fuel cell technology


Stock of Fuel Cell Electric Vehicles (FCEVs) in 2017

The US is the world leader in fuel cell vehicle deployment...

Hydrogen fuelling stations by country, 2017

...but Japan has more than twice as many fuelling stations.

Tokyo 2020 Olympics

- ▶ 2020 targets:
 - ► Fuel cell cars 2000 → 40,000
 - ► Fuel cell buses 2 → 100
 - ► Hydrogen fuelling stations 100 → 160
- Costs have been ignored
 - Cost efficient development for several sectors in the long term
 - ▶ Public transportation

Horizon2020:

Energy Observer

- Autonomous hyderogen vessel
- Emission free
- ► Electric-propelled by RE and carbonfree hydrogen made from seawater
- ► Tokyo 2020

Tokyo Study Trip, october 2017:

Hydrogen boat

- Hydrogen fuelled boat project led by Dr. Etsuro Shimizu, TUMSAT
- Technology to be used for tourist sightseeing boats in Tokyo bay for 2020 Olympics

Possibilities for Norway

- Green hydrogen: too expensive to produce in Japan
- Race between Norway and Australia to supply hydrogen to Japans energy transition
 - ► Australia: coal
 - ▶ Norway: hydropower

Possibilities for Norway

- Svein Grandum, Innovation Norway: Norwegian companies are attractive partners for Japan
 - Norwegian suppliers can contribute to infrastructure development and deliver green hydrogen
- Seiichiro Kimura (REI): good opportunities for foreign companies
 - ► Electrolysis technology not efficient enough (NEDO)

Hydrogen critics are coming around

- Risk related to the rate of the market uptake of hydrogen vehicles and hydrogen demand
- ► The IEA estimates that 150 million hydrogen vehicles will be on the global market by 2050
 - Infrastructure costs estimated at 900-1900 dollars for each vehicle.

«The government is a strong supporter of the commitment to the hydrogen society- they see it as a key technology for the future»

Takuro Kobashi (REI)

THANK YOU FOR YOUR ATTENTION!

<u>anjamolnes@gmail.com</u> @AnjaMolnes

