

The scientific payload of the ALOFT mission to chase Terrestrial Gamma-ray Flashes and gamma-ray glows

Martino Marisaldi¹ (martino.marisaldi@uib.no), N. Østgaard¹, K. Ullaland¹, S. Yang¹, B. H. Qureshi¹, J. Søndergaard¹, A. Mezentsev¹, D. Sarria¹, N. Lehtinen¹,

T. J. Lang², H. Christian³, M. Quick², R. Blakeslee², J. E. Grove⁴, and D. Shy⁵ ¹Birkeland Centre for Space Science, University of Bergen, Norway ²NASA Marshall Space Flight Center, Huntsville, USA ³Department of Atmospheric Science, University of Alabama in Huntsville, Huntsville, USA, ⁴U.S. Naval Research Laboratory, Washington DC, USA, ⁵National Research Council Research Associate resident at the U.S. Naval Research Laboratory, Washington DC, 20375, USA

The network of ground sensors in support of the ALOFT mission

THE ALOFT MISSION

ALOFT (Airborne Lightning Observatory for FEGS and TGFs) is a flight campaign designed to observe Terrestrial Gamma-ray Flashes (TGF) and gamma-ray glows close to their production source. The campaign consists of 60 flight hours of a NASA ER-2 research aircraft taking off from Florida and is scheduled for July 2023. The ER-2 cruise altitude of 20 km allows flying over active thunderstorms in the Gulf of Mexico and Caribbean region, one of the most TGF-active region on the planet. The synergy between airborne gamma-ray, optical and electric field measurements, combined with ground-based radio observations, will provide a unique set of observations to constrain the source properties and their physics.

DATA FROM AIRCRAFT

Gamma-rays Is there a TGF or a glow?

Optical Are there 'hot' processes? (Blue vs. red disharges)

SCIENTIFIC OBJECTIVES

- Flashes (TGF) produced?
- Are gamma-ray glows and TGFs interrelated?

DATA FROM GROUND

LF radio

How much charge is moved? Are there 'slow' processes?

VHF radio (interferometry) What is the discharge spatial morphology? What are the characteristics (length, speed...) of the associated leader?

readout	area (cm ²)	Usage	100 μs (distance
BGO +	225	Spectroscopy	0.05 - 1 cr
PMT		0.3 – 40 MeV	(~15 – 25
LYSO +	25	Spectroscopy	0.5 - 50 cr
SiPM		0.3 – 40 MeV	(~8 – 20 k
LYSO +	1	Counter	10 - 1000
PMT		> 0.3 MeV	(~12 - 5 k
LYSO +	0.09	Counter	500 - 100
SiPM		> 0.3 MeV	(<~6 km)

iSTORM – PIs: Eric J. Grove / Daniel Shy, U.S. Naval Research Laboratory, USA

- 32 CeBr₃ scintillators with SiPM readout
- 100 keV 8 MeV energy range
- High spectral resolution

THE OPTICAL PAYLOAD

- Fly's Eye Geostationary Lightning Mapper (GLM) Simulator (FEGS) PI Mason Quick, NASA MSFC, USA
 - Array of optical photometers (100 kHz sampling) 10x10 km field of view:

9381

- 25x 780 nm
- 1x 340 nm
- 1x 500 nm
- 1x 870 nm
- 1x 1600 nm
- 1x 400-1100 nm (VNIR)
- 1.6 μm photometer from Sandia Lab (Pis: R. Longenbaugh and T. Edwards, Sandia National Laboratory, USA)
- 400-1000 nm HD camera
- FEGS Spectrometer:
 - Range: 200-850 nm
 - Resolution: 1.5 nm
 - Rate: 500 spectra/second (2ms integration)

THE ELECTRICAL ENVIRONMENT PAYLOAD

Electric Field Change Meter (EFCM) – PI: Hugh Christian, University of Alabama Huntsville, USA

- Fast channel: 10 MHz sampling rate, 100 µs decay time constant
- Slow channel: 1 MHz sampling rate, 150 ms decay time constant

Lightning Instrument Package (LIP) - PI: Chistofer J. Schultz, NASA MSFC

• Three component Electric field, 0.1 s time resolution

THE CLOUD CHARACTERIZATION PAYLOAD

Advanced Microwave Precipitation Radiometer (AMPR) - PI: Timothy Lang, NASA MSFC, USA 10-85 GHz microwave radiometer, ~40-km wide swath

Conically Scanning Sub-millimeter-wave Imaging Radiometer (CoSSIR) - PI: Rachael Kroodsma, NASA Goddard SFC, USA

- 16-channel total power imaging radiometer in 170-684 GHz microwave band
- Cloud Radar System (CRS) PI: Gerry Heymsfield, NASA Goddard SFC, USA
- 94 GHz (W-band) doppler radar
- X-band Radar (EXRAD) PI: Gerry Heymsfield, NASA Goddard SFC, USA • X-band Doppler radar

REFERENCES

The ALOFT webpage

Attend the ALOFT presentation by N. Østgaard et al. (EGU23-3116): Tue, 25 Apr, Room M2, 10:00–10:10

- m-2 km)
- (m cm-2
- (m 00 cm⁻²