

Airborne Lighting Observatory for FEGS and TGFs Campaign (ALOFT)

PI – Nikolai Ostgaard, BCSS, University of Bergen, Norway Project Scientist – Timothy Lang, NASA MSFC ER-2 Project Manager – Franzeska Becker, NASA AFRC

ALOFT instruments:

Ground Instruments:

Phillip Bitzer, Morris Cohen, Steven Cummer, Martin Fullekrug, Joan Montanya, Marni Pazos, Yunjiao Pu, Oscar van der Velde, Camilo Velosa

ALOFT science

Main scientific objectives of ALOFT

- How and under what conditions are Terrestrial Gamma Flashes (TGF) produced?
- How extended in space and time are gamma-ray glows?
 - Are gamma-ray glows and TGFs interrelated?

All flights will be devoted to TGF search

In addition, ALOFT will (comes for free):

- Perform International Space Station Lightning Imaging Sensor (ISS LIS) and Geostationary Lightning Mapper (GLM) validation
- Evaluate new design concepts for next-generation spaceborne lightning mappers.
- Make combined microwave and lightning measurements of tropical convection

ALOFT Instruments

UIB-BGO: gamma rays:

- BGO:
 - 225 cm2, 300 keV to ~40 MeV, 27 ns
- Three LYSO/SiPM
 - 25 cm2, 15 ns
 - 1 cm2
 - 0.09 cm²

iSTORM: gamma-rays:

- 32 CeBr: 100 keV 8 MeV
- High spectral resolution

Fly's Eye GLM Simulator (FEGS):

- · Optical mapper:
 - 777 nm (25 phot), 337 nm, 500 nm, 868 nm, 1600 nm
 - 30 photometers total 100 kHz
 - HD camera, 400-1000 nm
 - 10x10 km FOV
- Spectrometer:
 - Range: 200-850 nm
 - Resolution: 1.5 nm
 - Rate: 500 spectra/second (2ms integration)

Electric Field Change Meter

Fast (10 Mhz) and slow (1 MHz)

Lightning Instrument Package (LIP):

- Three component Electric field,
- 0.1 s resolution

Cloud Information (radiometers and radars):

Advanced Microwave Precipitation Radiometer (AMPR): 10-85 GHz Cloud Radar System (CRS): W-band

X-band Radar (EXRAD)

Conically Scanning Sub-millimeter-wave Imaging Radiometer (CoSSIR): 170-684 GHz

Poster on ALOFT instrumets:

Marisaldi: EGU23-9381 (Mon 24.04)

With QR code to ALOFT web-page

ALOFT – where and when

Observe TGFs in one of the most TGF-intense regions on the planet

Observe gamma-ray glows in thunderstorms and their relation to TGFs

ER-2 flight planned for July 2023
20 km altitude (signal/background)
60 hours scientific flight

ALOFT flight paths – TGF statistics and ground

TGF density map
Flight paths from MacDill, AFB, Tampa, Florida

Ground radio sensors:

- LF (large circles)
- Electric field meter network (yellow)
- VHF interferometers (arrows)

ALOFT flight paths planning - example

- Forecast team
- GOES:
 GLM (continuous)
 ABI Vis/IR (5-10 min)

Important for the analysis:

Example of Thunderstorm Overflight from IMPACTS

ALOFT science

TGF and optics seen by ASIM - a large scale illustration of what ALOFT will see

ALOFT will also have electric field measurements, later slide

ALOFT science

ASIM/Fermi FOV versus ALOFT

The red and green lines

Hansen et al., JGR, doi: 10.1002/jgra.50143, 2013

Take home message:

- Be prepared for a wide dynamic range (4 orders of magnitude)
- Overpasses by TGF satellites: unlikely to detect the same event

ALOFT: FOV is small but signal to noise ratio is huge

ALOFT science - glows

Thank you