Flexible Hydrogen Production

Raag August Sandal Rolfsen & Lars Skaugen Strømholm

May 25, 2021

Outline

- 1. Grey, blue, and green hydrogen. Challenges.
- 2. Electricity prices today and expectations towards the future.
- 3. CAPEX today and expectations towards the future. Expected to be halved by 2040.
- 4. Hydrogen storage. Tank vs. underground.
- 5. Problem statement.
- 6. Objective function.
- Constraints.
- 8. Results/discussion of results.
- 9. Hypothetical outcomes. Even more fluctuations? Same fluctuations but lower average price? New pattern?

Energy density

- Potential for storage of energy
- Substantial losses today

Figure: Energy density of different fuels.

Hydrogen production methods

Figure: Overview of different hydrogen production methods.

Hydrogen

- ► Grey hydrogen
- ► Blue hydrogen
- ► Green hydrogen

Figure: Water electrolysis production process (NEL, 2019).

Storage methods

- Solid-state
- Tank
- Underground

Figure: Trade-offs between tank and underground storage.

Storage methods

- Solid-state
- Tank
- Underground

Figure: Trade-offs between tank and underground storage.

Electricity prices

Figure: Aggregated weeks for winter, spring, summer and fall 2019 for Nord Pool NO2 region.

Future electricity prices

- Future electricity prices are expected to increase
- More fluctuations

Year	Statnett (€/MWh)	NVE €/MWh)
2020	28.00	-
2022	-	36.99
2025	34.00	40.93
2030	36.00	39.04
2040	39.00	39.53

Table: Future electricity prices estimates for Southwestern Norway (NO2) from Statnett and NVE [Statnett 2020, NVE 2020]. Note: NVE's estimates are originally denoted in øre/kWh. These are converted to €/MWh with an exchange rate of 0.093 €/NOK.

Electrolyzer CAPEX

 Future electrolyzer CAPEX is expected to decrease substantially

Time horizon	Today	2030	Long term
CAPEX (€/kW)	423-1183	340-723	170-595

Table: Alkaline electrolyzer capital expenditure [IEA 2019]. Note: IEA's estimates are originally denoted in \$/kW. These are converted to €/kW with an exchange rate of 1 EUR = 1.21 USD.

Problem statement

We intend to explore if electricity price savings, through the use of excess production capacity and storage, can exceed the associated investment costs.

Objective function

$$\begin{array}{ll} \min \\ \text{total costs} &= Capex^{electrolyzer} \\ &+ Capex^{storage} \\ &+ \sum\limits_{y \in Y} (Restack_y) \\ &+ Opex_y^{electrolyzer} \\ &+ Opex_y^{storage} \\ &+ Grid_costs_y \\ &+ production_costs_y \\ &+ standby_costs_y \\ &+ cold_start_costs_y) \end{array}$$

Objective function

$$\begin{array}{ll} \min \\ \text{total costs} \end{array} & \text{total costs} = Capex^{electrolyzer} \\ & + Capex^{storage} \\ & + \sum_{y \in Y} (Restack_y) \\ & + Opex_y^{electrolyzer} \\ & + Opex_y^{storage} \\ & + Grid_costs_y \\ & + production_costs_y \\ & + standby_costs_y \\ & + cold_start_costs_y \end{array}$$

Objective function

$$\begin{array}{ll} \min \\ \text{total costs} & \text{total costs} = Capex^{electrolyzer} \\ & + Capex^{storage} \\ & + \sum_{y \in Y} (Restack_y) \\ & + Opex_y^{electrolyzer} \\ & + Opex_y^{storage} \\ & + Grid_costs_y \\ & + production_costs_y \\ & + standby_costs_y \\ & + cold_start_costs_y) \end{array}$$

Constraints

- Capacity
- Production
- Storage/inventory balance
- ► Equipment states (cold start and standby)
- Non-negativity

Results

Figure: Hourly, weekly average, production schedule and electricity prices in a future scenario. Daily off-take: 40 tonnes, daily production capacity: 47 tonnes, storage capacity: 500 tonnes.

Results

Figure: LCOH (\notin /kg) and production cost (\notin /kg) for different production and storage capacities in scenario 3 (long-term time horizon). Daily off-take: 40 tonnes.

Results

 Excess production capacity (>44 tonnes) is only applicable in the long-term with underground storage when considering grid-connected water electrolysis

Scenario	Production capacity	Storage capacity	LCOH	Production cost
1	44	3,000	3.016	2.307
2	44	3,000	2.657	2.133
3	44	3,000	2.382	1.984
4	44	500,000	2.620	1.978
5	47	500,000	2.337	1.793

Table: Optimal daily production capacity (tonnes), storage capacity (kg), LCOH (€/kg) and production cost (€/kg). Scenario 1 reflects today, scenario 2 and 4 reflect medium-term, and scenario 3 and 5 reflect long-term. Daily off-take: 40 tonnes.

Comparing results with and without grid fees

- ▶ Daily production capacity increases more (and earlier) without the impact of grid fees
- ► Flexible hydrogen production can be preferred for off-grid electrolysis in the long-term

	With grid fees				Without grid fees			
	Production capacity	Storage capacity	LCOH	Production cost	Production capacity	Storage capacity	LCOH	Production cost
1	44	3,000	3.016	2.307	44	3,000	2.717	2.218
2	44	3,000	2.657	2.133	44	3,000	2.379	2.050
3	44	3,000	2.382	1.984	53	6,000	2.114	1.854
4	44	500,000	2.620	1.978	48	500,000	2.350	1.868
5	47	500,000	2.337	1.793	60	500,000	2.064	1.647

Table: Optimal daily production capacity (tonnes), storage capacity (kg), LCOH (€/kg) and production cost (€/kg) in scenarios 1-5 with and without grid fees. Daily off-take: 40 tonnes.

Comparing results with and without grid fees

- Daily production capacity increases more (and earlier) without the impact of grid fees
- ► Flexible hydrogen production can be preferred for off-grid electrolysis in the long-term

	With grid fees			Without grid fees				
	Production capacity	Storage capacity	LCOH	Production cost	Production capacity	Storage capacity	LCOH	Production cost
1	44	3,000	3.016	2.307	44	3,000	2.717	2.218
2	44	3,000	2.657	2.133	44	3,000	2.379	2.050
3	44	3,000	2.382	1.984	53	6,000	2.114	1.854
4	44	500,000	2.620	1.978	48	500,000	2.350	1.868
5	47	500,000	2.337	1.793	60	500,000	2.064	1.647

Table: Optimal daily production capacity (tonnes), storage capacity (kg), LCOH (€/kg) and production cost (€/kg) in scenarios 1-5 with and without grid fees. Daily off-take: 40 tonnes.

Comparing results with and without grid fees

Figure: Stacked LCOH with and without grid fees.

- Challenging to make production scheduling profitable today
- Large underground facilities are required
- Grid fees limit the potential, both today and in the future
- Off-grid/subsidized water electrolysis
- Competitiveness with blue hydrogen?

- Challenging to make production scheduling profitable today
- Large underground facilities are required
- Grid fees limit the potential, both today and in the future
- Off-grid/subsidized water electrolysis
- Competitiveness with blue hydrogen?

- Challenging to make production scheduling profitable today
- Large underground facilities are required
- Grid fees limit the potential, both today and in the future
- Off-grid/subsidized water electrolysis
- Competitiveness with blue hydrogen?

- Challenging to make production scheduling profitable today
- Large underground facilities are required
- Grid fees limit the potential, both today and in the future
- Off-grid/subsidized water electrolysis
- Competitiveness with blue hydrogen?

- Challenging to make production scheduling profitable today
- Large underground facilities are required
- Grid fees limit the potential, both today and in the future
- Off-grid/subsidized water electrolysis
- Competitiveness with blue hydrogen?

- Challenging to make production scheduling profitable today
- Large underground facilities are required
- Grid fees limit the potential, both today and in the future
- Off-grid/subsidized water electrolysis
- Competitiveness with blue hydrogen?

Selected references

Statnett (2020)

Langsiktig markedsanalyse: Norden og Europa 2020-2050

NVE (2020)

Langsiktig kraftmarkedsanalyse 2020-2040: Mer fornybar kraftproduksjon gir mer væravhengige kraftpriser

IEA (2019)

The Future of Hydrogen: Seizing Today's Opportunities