
Image: Science and Technology Image: Norwegian University of Science and Technology

Design and Operation of Liquid Hydrogen Storage Tanks

Lucas Claussner, Federico Ustolin, Giordano Emrys Scarponi Co-funded by the European Union
Clean Hydrogen Partnership
UK Research and Innovation Outline

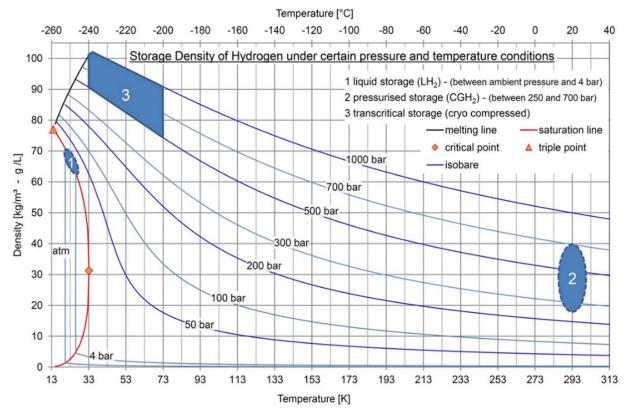
Introduction to LH2

Storage

Insulation techniques

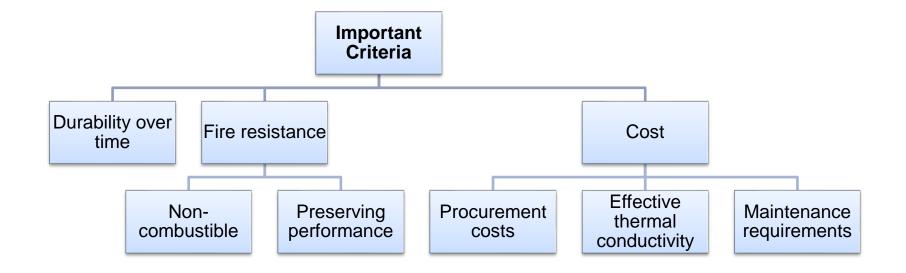
Criteria & Performance

Tank dynamic


Modelling approaches

Conclusions & Further work

Why is Liquid Hydrogen Relevant?



Norwegian University of Science and Technology

Source: MORITZ KUHN: Net storage density of hydrogen under certain pressure and temperature conditions

Insulation Techniques in LH2 storage tanks

Insulation Techniques in LH2 storage tanks

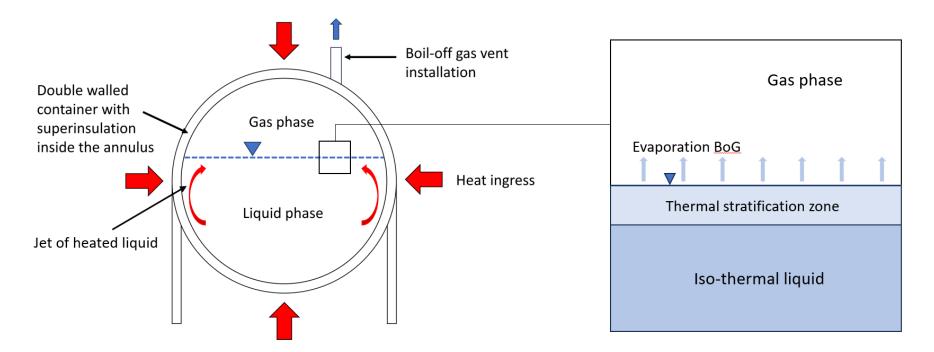
Multi-layer insulation (MLI)	Perlite	Hollow glass microspheres (HGM)	Aerogel	Foams
 commonly used in mobile applications and smaller vessels multiple layers of thin reflective materials Polymer spacers In combination with vacuum 	 Stationary applications Mineral with foam-like cellular structure vacuumed Minimal environmental impact 	 microscopic borosilicate spheres Pressure-, vibration- and heat resistant Ca. 3x the cost of perlite 	 General term used by the industry extremely low density Flexible, suitable for different tank- geometries 	 Spray-on-foam Mostly used at atmospheric pressure Often combined with other techniques

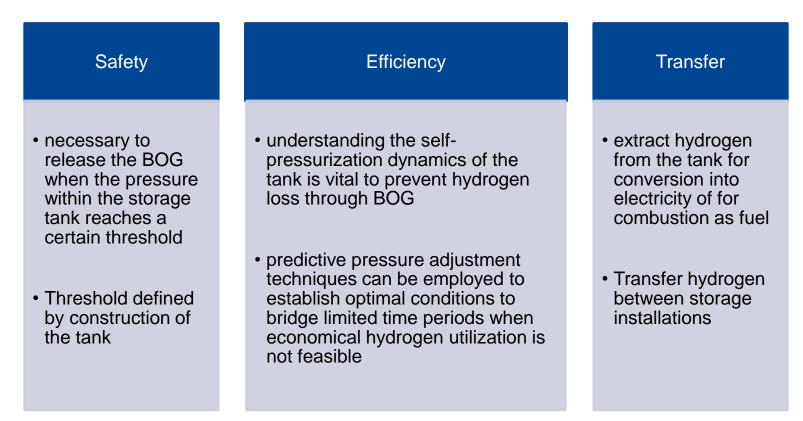
Performance of Different Insulation Systems



Insulation material	Effective thermal conductivity (W/m*K)	Density (kg/m³)	Melting temperature (°C)
Vacuum-multi-layer 1 (polyester)	10 ⁻⁶ to 10 ⁻⁵	42	140-400
Vacuum -multi-layer 2 (fiberglass)	10 ⁻⁶ to 10 ⁻⁵	-	1000-1400 (660 for Aluminium)
Glass bubbles	10 ⁻³ to 10 ⁻⁴	65	1400-1600
Perlite	10 ⁻⁴ to 10 ⁻³	132	1260
Aerogel Blanket	10 ⁻³ to 10 ⁻²	133	1200

Comparison of different insulation materials (Fesmire et al., 2022; HEATERK, 2022)


LH2 Tank Dynamic Self-Pressurization

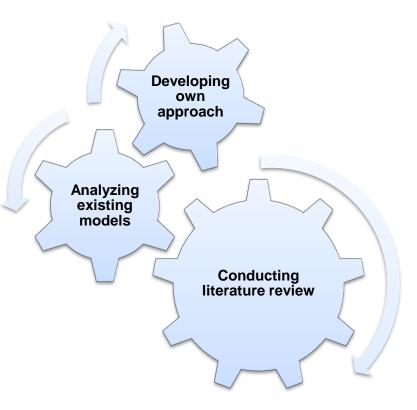

LH2 Tank Dynamic Temperature stratification

Importance of BoG Formation

Modelling Approaches

Model	Model Focus	Validation	Modelling Approach
Kassemi et al. (2014)	Self-pressurization of large volume LH ₂ storage tank	Experimental testing with a multipurpose hydrogen test bed (MHTB)	CFD model utilizing kinetics- based Schrage equation
Stewart et al. (2016)	Self-pressurization	Comparison with experimental data for pressure evolution and temperature	CFD simulation in ANSYS Fluent
Agrawal et al. (2017)	Thermal stratification	Experimental data from literature	-
Joseph et al. (2017)	Thermal stratification	-	Transient two-phase thermodynamic lumped model
Ustolin et al. (2021)	Thermal behavior of LH ₂ tank when exposed to fire	Experimental validation	Lumped-element model
Ustolin et al. (2022b)	Thermal behavior of LH ₂ tank when exposed to fire	Small scale fire test on LH ₂ tank	Two-dimensional CFD analysis
Matveev and Leachman (2023)	Pressurization- and venting rates	-	Lump-element model

Conclusions and Recent Developments


LH2 storage is demanding due to its properties

The efficient operation of LH₂ tanks is tied to adequate insulation techniques and to self-pressurization

Modelling techniques in understanding and predicting these processes play a key role

Various models, analytical and numerical are already developed for a wide range of cryogenic applications

However, there is no approach for LH2 pressurization adaptable to a range of tank types

Thank you for your attention

lucas.claussner@ntnu.no

ELVHYS project No. 101101381 is supported by the Clean Hydrogen Partnership and its members. UK participants in Horizon Europe Project ELVHYS are supported by UKRI grant numbers 10063519 (University of Ulster) and 10070592 (Health and Safety Executive).

Disclaimer: Despite the care that was taken while preparing this document the following disclaimer applies: Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or Clean Hydrogen JU. Neither the European Union nor the granting authority can be held responsible for them.

Norwegian University of Science and Technology