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What is numerical optimisation?

* The science of minimising or
maximising a mathematical
model by applying search

. Global Optimum
algorithms P

Local Optimum
* Local solvers normally use

gradient information to
quickly find the local optimum

* Global solvers are gradient
free but require many
iterations = can potentially
find the global optimum
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Do we need numerical optimisation?

* When solving a design problem
we tend to visualise the response
in the solution-space as convex

100 -

* |If the problem is not convex it will
take us a long time to find the 0
best solution

*  When the problem has more than
2 DOFs we can not visualise the
solution space, not even in our

1000,

minds = |
* Qur brain is simply not designed
to solve such complex problems 00
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Evolutionary optimisation

* EO mimics Darwin's
natural selection by only
allowing the fittest
members of a generation
to produce offspring

_ Local optimum
P,

* EO requires a more
lengthy and expensive
search compared to local 4 Gl optimum
gradient methods

* Howev-er, EQ -has the Local, gradient Global, evolutionary
potential to find the optimisation optimisation
global optimum solution

in the design space
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Application to wind energy

 The wind turbines in use today
have been evolved for more than
25 years

* Modern turbines are much better
than they were 25 years ago, they
produce more power, are more
reliable and more silent

* But, wind turbines still need to be
improved further in order to be
cost competitive to oil and gas

* Evolutionary optimisation can
help speed up the design process
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Airfoil Optimisation for
Wind Turbine Application
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Motivation

* Wind farm operators report loss
in power production over time
of about 10-15%

 The loss is caused by increased
surface roughness due to
leading edge contamination

Operation > days/weeks

e The contamination comes from
insects, sand, salt, and hail
hitting the turbine over time

* Will eventually lead to blade
erosion and require repair

-~ ©H.P. Zimmer

Operation > 3 years
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Airfoil optimisation project

* Optimisation tool that ':\ezro_‘:;':ni’:tig
. . . UI
automatically optimises
airfoils is developed

18% airfoil

21% airfoil

* Method controls the
loss in performance due
to leading edge
contamination

Structural
requirements

25% airfoil

* Tested for the design of
airfoils at the outer part
of MW-class wind
turbines
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Optimisation and constraints

* Airfoil design philosophy:
maximise performance for 100

the full life-span of the rotor %
blade g

8 aerodynamic and
geometric constraints are
required to control the airfoil a (deg)
performance 15

e Adaptive penalty function
created to ensure that the
algorithm finds the best ~
possible solutions
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Airfoil design tool

* Airfoil shapes are created using the Class-Shape Transformation (CST)
technique

* The airfoil performance is computed using the panel code XFOIL
* Adaptive penalty function is used to constrain the airfoil properties

* Optimisation is performed using the gradient free CMA-ES algorithm

irfoi N Optimal
'St?rt' AII‘fO.I| ' XFOIL Aerofg.eo 0pt|m|§atlon airfoil
optimisation parametrisation constraints algorithm
shape found

T

Shape not optimal, change airfoil design variables
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Example of airfoil optimisation

* Maximise C/Cy at a =6, Re =1 million

e CST=4/4

e Simplified example, only thickness constraint (16%) applied
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Optimised 18% airfoil
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performance compared to
equally thick Delft airfoil,
optimised at Re = 3 million
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Optimised 21% airfoil

0.4F — Optimised 21% airfoil
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0.3r
e Similar or improved 02
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Optimised 25% airfoil

—— Optimised 25% airfoil
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Winglet Optimisation for a
Model-Scale Wind Turbine
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Winglets

* Inthe early 1980’s winglets
where tested on gliders

* Now all gliders use winglets

* Today most transport aircraft

use winglet /
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Induced drag

* Winglets reduce the
induced drag of a wing

* The induces drag
phenomenon both reduces
the lift and increases the
drag

* The local pressure
difference at the tips of the
wing creates a vortex system
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2-bladed rotor

—

* New rotor with removable tips
developed for the winglet NTNU _ Trondheim

raiversiy 0
i ryegial l m\”,sx,‘m\
prOJeCt NO[ \\ o ‘“]([ '[‘(‘('[”HH fe

qcienct’

e Rotor and winglet 3D printed
in acrylic plastic

 Two bladed turbine chosen to
increase chord size and
Reynolds number on the
winglets

e Optimum chord and twist
distribution computed using
BEM theory
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Winglet parametrisation

 Wingletis
parametrised
using 6 DOFs

Root chord Span

* Span on rotor
equal both with
and without
winglet

e Large design
space of feasible
winglet shapes
TN
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CFD simulations

 The wind turbine
performance is simulated
using RANS CFD

Vorticity: Magnitude (/s)
200.00

* Turbulent flow predicted 160.00
with the Spalart Allmaras 120,00
turbulence model g | G0

40.00

e Simulation time is
approximately 3-4h

0.00

Ti d rati A wh
ipspeed ratio = A = —
Usc
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Winglet optimisation loop

DoE
LHC Samples

CMIr Prototech

CFD
Simulations
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Build Kriging
Surrogate Model

Search
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Add infill

Optimised
Design




Optimised winglet

e Power increase
with winglet:

* CFD=7.8%
* Exp=10.3%

* Winglet also
compared to
extended tip

* Performance at
TSR > 6 is worse
due to bending of
the 3d printed
plastic winglets
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Flow on rotor blade

e TKE and streamlines
of rotor at TSR =6

* Simulations
performed using the
Reynolds-Stress
Model

e Strong 3D flow at
root of rotor blade

f

By,
<

« Winglet improves T
flow condition locally

at the tip
Turbulent Kinetic Energy (J/kg)
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Pressure on rotor blades

* Pressure represents
the production of lift

* More lift is generated
locally at the tip for
the rotor with winglet
—induced drag is
reduced

* Pressure on the
inboard part is equal

* Winglet improves lift
only in the tip region

Pressure (Pa)
-2000.00 -1600.00 -1200.00 -800.00
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Questions?

~
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\t/
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