

Energy solutions in the most sustainable neighborhood in Bergen

Louise Sondrup

Leder Innovasjon Eviny AS

Anne Jordal

 Forretningsutvikler Storkunde Volte AS (Tidligere Termo)

Ravneberget

An old and undersized transformer with the most beautiful view of the city

What to do?

The ambitions

- Contribute to 1,5 graders byen Bergen. (reducing CO2 emissions by 50%)
- Cover the extra cost to build a compact transformer (BKK Nett)

Sustainability:

- Use of material
- Use of energy
 - Utilizing the excess heat from the transformer
 - Maximizing Solar power
 - District heating
 - Batteries?
- Coherent solutions for mobility to reduce use of car
- Shared solutions for cars, bikes etc.
- Coworking space, greenhouse etc.

Overall plan

- 130 homes organised around together
- Variety of sizes 20-120 m2
- Rehabilitation of existing building
- Kindergarten near Mount Ulrikken
- New compact trafo in the vestern corner

Today the transformer is a closed area

We are giving acess

Support from Enova to complete: "Konseptutredning for innovative energion og klimaløsninger"

Focus of the energy analysis

- Analyzing the energy needs for the area
- How to best <u>utilize the excess</u> heat from the transformer
 - Gathering information from similar projects
 - Analyzing different options based on economy and sustainability
 - Choosing the preferred energy system
- Designing the optimal electric system for the area
 - Regulatory challenges
 - Maximize solar production
 - Options for smart control
- Business model and different roles and interfaces

Når vi oppsummerer nettotallene og korrigerer for tap medfører det at levert energi fra energisentral må dekke følgende behov:

	Energibehov	Effektbehov
Romoppvarming og ventilasjonsvarme	310 000 kWh/år	350 kW
Varmt tappevann	410 000 kWh/år	ca 50 kW ved ideell akkumulering
		ca 150 kW ved ingen akkumulering
Sum varmebehov for energisentral	720 000 kWh/år	400 kW ved ideell akkumulering
		500 kW ved ingen akkumulering

Energy-need for the area

Beregnet årlig strømforbruk er 466 000 kWh/år. Beregnet maks effekt er 86 kW.

Solar production

- Place houses to maximize solar production during hours of use
- Change the roof angel in order to increase production
- Regulatory limits sets boundaries to how much it is possible to export and share in a neighborhood – this is subject to change

Battery or digital/ physical smartgrid?

Excess heat - Similar projects

- BKK Nett (Kokstad and Strømgaten)
- Fortum Varme/Elvia
- Danish Central heating
- Siemens, Highbury London
- IKB, Innsbruck Østerrike

- Most projects was built because the "Grid-owner" needed the heating for own purpose or because of external demands (London).
- None of the projects was build for commercial purposes
- The "wellbeing" of the transformer is the main purpose (transforming the power) and one should not run a transformer suboptimal to produce heat.
- NVE points out the monopoly can not pay extra cost to enable utilizations of excess heat
- The cooling system of the transformer is key to accessing the excess heat

Expected amount of excess heat from the transformer: Simplified year-profile (calculated load, subtracted no-load losses and load losses)

	Sommer natt	Sommer dag	Mellom- sesong natt	Mellom- sesong dag	Vinter natt	Vinter dag	Snitt effekt/ sum energi
Effekt trafo [MW el]	25	30	27	35	30	40	31
Lastpådrag trafo [%]	26 %	32 %	29 %	37 %	32 %	42 %	33 %
Varmeutbytte [%]	0,2 %	0,2 %	0,2 %	0,2 %	0,2 %	0,2 %	0,2 %
Varme vannside [kW varme]	50	60	54	70	60	80	62
Antagelse om driftstimer (10 t natt og 14 t dag):	1230	1722	1800	2520	620	868	8760
Energimengde [kWh]	61 500	103 320	97 200	176 400	37 200	69 440	545 060

 Summer: Mai, June, July, August; Middle season: Sept, okt, nov + feb, mars, April; Winter er December and januar.

Choosing the best options was not easy

Different options:

Alt	Energy source
0A	District heating
0B	Eletric heat pump
1	Air/water co2 heatpump 100 KW
2A	Fluid/water propan heatpump 50Kw
2B	Fluid/water co2 heatpump 100 KW
3	Excess heat used to preheat water combined with district heating

Preferred solution

- The excess heat covers around 30% of energy need
- District heating (fjernvarme) covers the remains
- This makes for a robust technical solution utilizing both excess heat and district heating
- Biggest uncertainty is connected to the actual amount of excess heat and high investment cost and the business model concerning who owns the water-cooling system

