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Abstract
Epidemics and pandemics pose a sporadic and sometimes severe threat to human health. How 

should policymakers prioritize preventing and preparing for such events, relative to other needs? 

To answer this question, we used computational epidemiology and extreme events modeling 

simulations to estimate the risk of future mortality from low frequency, high severity epidemics 

and pandemics in two important categories—respiratory diseases (in particular those caused by 

pandemic influenza viruses and novel coronaviruses) and viral hemorrhagic fevers (VHFs) such 

as Ebola and Marburg virus diseases. We estimate a global annual average of 2.5 million deaths, 

attributed to respiratory pandemics. We estimate an annual average of 26,000 VHF deaths globally, 

72 percent of which would be in Africa. Annual averages conceal vast year by year variation, and 

the reported analyses convey that variation—as well as variation across regions and by age. Our 

estimates suggest that both the frequency and severity of such events is higher than previously 

believed—and this is likely to be a lower bound estimate given the focus of this chapter on deaths 

caused by a subset of pathogens. Our simulations suggest that an event having the mortality level of 

COVID-19 should not be considered a “once in a century” risk, but rather occurring with an annual 

probability of 2–3 percent (that is, a one in 33–50-year event). Despite the substantial uncertainty in 

heavy-tail distributions, policymakers can use these estimates to develop risk-informed financing, 

prevention, preparedness, and response plans.

This paper was prepared as a chapter for Volume 2 of Disease Control Priorities, 4th edition, to be 

published by the World Bank, and as a background paper for the Lancet Commission on Investing in 

Health.
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Foreword
The Center for Global Development (CGD) is publishing this working paper because the paper’s 

estimates of the risk of the next pandemic were essential for informing recent work including a 

Resource Allocation Framework for Pandemic Risk and Surveillance, prepared in collaboration with  

Concentric by Ginkgo Bioworks, which in turn sought to contribute to policy discussions about the 

design and implementation of the Pandemic Fund. The Pandemic Fund went into implementation 

based on a proposal from the G20 High-Level Independent Panel Report on Financing the Global 

Commons for Pandemic Preparedness and Response, co-chaired by Ngozi Okonjo-Iweala, Lawrence 

Summers (CGD board chair), and Tharman Shanmugaratnam, with CGD and Bruegel as the project 

team and the US National Academy of Medicine and Wellcome Trust as administrative secretariat.

This paper will be invaluable in informing policy discussions about the future of pandemic financing 

amidst competing policy agendas. It offers estimates of pandemic risk, and emphasizes the 

importance of “tail risk,” indicating the potential impact of highly severe yet rare events. Compared to 

a paper by Fan, Jamison, and Summers (2017) on pandemic losses, the estimates from this paper are 

much larger.

This working paper was prepared as one of many chapters in the fourth edition of the Disease 

Control Priorities (DCP), hosted by the Bergen Centre for Ethics and Priority Setting at University 

of Bergen under the directorship of Ole Norheim and to be published by the World Bank. The first 

edition of the DCP was published as part of the World Development Report (WDR) in 1993. That report, 

entitled “Investing in Health,” was the World Bank’s first-ever WDR on health. It was led by Lawrence 

Summers (then chief economist at the World Bank) and Dean Jamison, who led subsequent editions 

of DCP nearly every decade. Priority setting for health, informed by economic evidence and value for 

money, remains as important as ever before in this era of polycrises, to help ensure that every cent 

spent on health care improves and saves lives.

Victoria Fan

Senior Fellow

Center for Global Development

https://www.cgdev.org/publication/resource-allocation-framework-pandemic-risk-and-surveillance-version-10
https://pandemic-financing.org/
https://pandemic-financing.org/
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Introduction
Long before the emergence of COVID-19, policy analysts described pandemics as a “neglected 

dimension” of global security, because fundamental aspects of prevention and preparedness were 

(and continue to be) persistently underfinanced (Jamison et al., 2013, Sands et al., 2016). Several high-

level panels convened in the midst of the COVID-19 pandemic have called for large increases in global 

spending on health system strengthening, surveillance, and preparedness (Sirleaf & Clark, 2021). 

These recommendations are vital, but contend with an entrenched pattern of panic and neglect—a 

strong tendency for sporadic health emergencies to spark short-term attention and investment, 

which tails off all too rapidly once the crisis has passed.

The slide from panic to neglect happens in part because policymakers are operating under 

uncertainty; they lack estimates of the probability of epidemics—including pandemics (Table 1)—that 

would enable them to prioritize preparedness for such events relative to other needs. As a result, 

epidemics and pandemics tend to be treated as inevitable and unpredictable phenomena rather 

than events for which decision makers can perform rigorous analysis, estimate costs, and prioritize 

investments. A key objective of this chapter is to reduce some dimensions of uncertainty in the 

analysis of epidemics and pandemics by applying principles of risk management: a framework in 

which probabilities can be estimated sufficiently to guide decision-making. 

Policymakers often choose to prioritize preparedness for high-probability events rather than rare 

ones, as the benefits of preparing for infrequent events are often invisible (Lempert & Light, 2009). 

To grapple with the threat posed by infrequent, severe epidemics, analysts should adopt a risk-

based approach for decision-making, more akin to methods used for other natural catastrophes. 

Emergency planners and policymakers are accustomed to thinking about natural catastrophes, 

such as floods and earthquakes, in terms of their frequency and severity (FEMA, 2016). This chapter 

provides a framework for quantifying the risk of epidemics, which can be used to change the 

dominant paradigm for risk assessment and preparedness planning. This framework is not typically 

used to plan for epidemics—but could be.

Adopting the most cost-effective strategies to prevent, prepare for, and respond to epidemics 

requires an understanding of their anticipated frequency and severity—that is, the level of risk that 

they pose (Table 1). Interventions such as strengthening disease surveillance systems, investing in 

lab and diagnostic capacity, and developing new vaccine platforms, production systems and supply 

chains might have a modest benefit-cost ratio if severe pandemics are merely a “once in a century” 

risk, but—if the risk is substantially greater—might be very cost-effective strategies to protect global 

health and reduce mortality. Our risk estimates allow decision makers to approximate the necessary 

level of epidemic preparedness measures, and to identify which measures would be most cost-

effective, both during and between epidemic periods. 
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In this chapter, we estimate the mortality risk of future epidemics caused by key respiratory pathogens 

and viral hemorrhagic fevers. We present new evidence and analyses of simulations underscoring the 

substantial risk posed by epidemics. In DCP-3, Madhav et al. (2017) presented risk estimates focusing 

on pandemic influenza—only one, albeit critical, pathogenic risk. In this chapter, we expand on this 

foundation and update the risk estimates provided in DCP-3 to include estimates for a broader set of 

epidemic risks. We incorporated new data and scientific advances into model enhancements, which 

we developed in part to support multilateral agencies, governments, philanthropic organizations, and 

the private sector. These enhancements also account for under-reporting in epidemiological data and 

adjust for demographic changes since Madhav et al. (2017) was originally published.

While many pathogens are capable of sparking large infectious disease events (e.g., pandemic 

influenza viruses, Zika virus, coronaviruses, HIV, cholera, dengue virus, and more [Madhav et al., 

2017]), we focused our analysis for this chapter in part based on Fraser et al.’s (2004) framework for 

assessing the controllability of epidemics caused by different pathogenic threats. In that framework, 

risk of an uncontrollable epidemic increases with human-to-human transmission efficiency and 

decreases with detection probability. Therefore, we focus this chapter on a subset of pathogens that 

meet these criteria and comprise the majority of risk: respiratory diseases, notably those caused by 

pandemic influenza viruses and epidemic/novel coronaviruses. We also develop estimates for viral 

hemorrhagic fevers (VHFs), encompassing filoviruses (e.g., Ebola and Marburg viruses), and Nipah 

virus (Table 1). These pathogens are of global concern and meet some aspects of Fraser et al.’s criteria, 

as they have shown the potential for causing asymptomatic infection (Diallo et al., 2019) and evading 

detection (Glennon et al., 2019).

We regard several other categories of infectious disease threats to be outside the scope of this 

chapter, and, though we recognize their importance, have not included them in our analysis:

•	 endemic diseases, even if they can enter epidemic phases (e.g., seasonal influenza, HIV/

AIDS, and malaria), since these diseases have well-understood, frequently occurring 

patterns of losses; 

•	 vector-borne diseases (e.g., Zika and dengue), since the geographic ranges are constrained 

by climatic and ecological factors; 

•	 bacterial diseases, including those arising from antimicrobial resistance, since treatment 

methods exist (though bacterial co-infections are included in our estimates of direct deaths 

for viral respiratory diseases); 

•	 other non-viral diseases (e.g., prions and fungi), since their geographies, modes of 

transmission, and transmission efficiency are limited; and

•	 “unknown unknowns”: diseases caused by pathogens not thought to have the potential to 

infect humans, or those wholly unknown to science.1

1	 It	is	important	to	bear	fully	in	mind	the	significance	of	unknown	unknowns;	after	all	it	is	not	so	very	long	ago	that	HIV/

AIDS	would	have	fallen	into	this	category.
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We also do not model risk from bio-terror (deliberate release of infectious agents) or bio-error 

(accidental release of infectious agents, for example from laboratory accidents), as this would 

require additional modeling efforts incorporating, for example, the characteristics, capabilities, 

and strategies of terrorist organizations, and biosafety protocols and practices within specific 

laboratories. These factors can be explicitly modeled and linked with the broader risk modeling 

framework that we present here, but are beyond the scope of our present analysis.

While epidemics can lead to many adverse outcomes—including infections, hospitalizations, deaths, 

societal disruption, educational delays, and economic shocks—in this chapter we focus on deaths. 

We include neither morbidity estimates, nor estimates of the impacts of long-term sequelae, though 

these are important topics. The welfare losses caused by epidemics and pandemics—including 

economic damages (see Fan et al., 2017) as well as losses to education, livelihoods, and trauma and 

psychological damages—are considerable, but require distinct modeling techniques and are beyond 

the scope of this chapter. We focus on deaths in this chapter as they are the most readily measurable, 

observable, and reported metric, and therefore provide a less biased indicator of epidemic severity 

than other metrics such as infections or hospitalizations. 

Given all of the above considerations, the estimates we present in this chapter are not intended to 

capture the totality of epidemic risk. Rather, they should be interpreted as a lower-bound estimate of 

the potential loss from such events.

TABLE 1. Key Terms and abbreviations

Term Definition Used in This Chapter
Average annual loss (AAL) The expected loss (in this chapter, deaths) per year. 

Further details on its calculation are provided in 
Annex A.

COVID-19 A coronavirus pandemic caused by SARS-CoV-2, 
beginning in 2019.

Direct mortality (or direct deaths) Deaths caused by primary infection with a pathogen 
and any immediate secondary effects resulting 
directly from that infection. We measure direct 
mortality from the time when an epidemic begins to 
when transmission ceases.

Epidemic “The occurrence in a community or region of 
cases of an illness … clearly in excess of normal 
expectancy” (Porta, 2014). 

Event catalog A collection of historical or modeled events and 
associated data on event parameters and outcome 
estimates (Madhav et al., 2021).
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Term Definition Used in This Chapter
Exceedance probability function (EPF), annual A function, also known as an “EP curve”, which 

provides the probability that an event of a given 
severity or worse will begin within a given year. For 
the purposes of this chapter, severity is measured in 
terms of deaths.

Excess mortality (or excess deaths) “The mortality above what would be expected based 
on the non-crisis mortality rate in the population of 
interest” (WHO, 2022a).

Normalized deaths Deaths per 10,000 population. Also referred to in this 
chapter as population normalized deaths. 

Pandemic “An epidemic occurring over a very wide area, 
crossing international boundaries, and usually 
affecting a large number of people” (Porta, 2014). 
In this chapter, when we refer to epidemics this 
includes pandemics as well. That is, all pandemics 
are epidemics, but not all epidemics reach the level 
of becoming pandemics.

Respiratory diseases Diseases that affect the lungs and other parts of the 
respiratory system (NCI, 2023). Respiratory diseases 
of pandemic potential constitute one of the two 
disease categories modeled in this chapter. The 
modeled pathogens include pandemic influenza and 
novel/epidemic coronaviruses.

Return period Inverse of annual exceedance probability; Average 
time between events of a given magnitude or 
greater (Box 1). Also known as return time or 
recurrence interval.

Risk The quantitative combination of the following 
information: (1) what can occur, (2) the probability 
that it can occur, and (3) the potential magnitude 
of consequences that can result (Kaplan & Garrick, 
1981).

Zoonotic spillover (or “spark”) risk Risk of transmission of an animal pathogen to a 
human (See “zoonotic pathogen”, defined below).

Spread risk Risk that a pathogen spreads from person to person.
Tail risk Risk of low-probability, high-impact events (Cirillo & 

Taleb, 2020).
Viral hemorrhagic fevers (VHFs) Diseases caused by viruses that damage organ 

systems, leading to hemorrhaging (CDC, 2021). 
VHF epidemics constitute one of the two disease 
categories of events modeled in this chapter. The 
modeled pathogens include Ebola, Marburg, and 
Nipah viruses.

Zoonotic pathogen “An infectious pathogen or parasite that originates 
in (or is maintained in the wild by) one or more non-
human hosts, but can be transmitted to and cause 
disease in humans” (Han et al., 2016). The process 
by which a zoonotic pathogen is transmitted to a 
human being is called “zoonotic spillover.”

TABLE 1. (Continued)
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BOX 1. Rolling the dice

Mathematically, the return period is the inverse of the exceedance probability (EP) (Table 1). For 

example, a 1% annual exceedance probability—a 1 percent chance of observing an event of a given 

severity (or worse) in a year—translates to a 100-year return period, or alternatively, a “1-in-

100 year event” (FEMA, 2016). While the return period is a convenient way to conceptualize the 

estimates we present in this chapter, this can also lead to misinterpretation of the level of risk. 

This type of misinterpretation can cause decision makers to underinvest in preparing for low 

probability, high severity events, by assuming (implicitly or explicitly) that the risk is “tomorrow’s 

problem.”

It is all too easy for even informed analysts to misinterpret frequency estimates for rare events. 

A 100-year return period does not mean that the level of loss occurs once per 100 years, nor does 

it mean that the losses are evenly spaced out at 100 year intervals. A “1-in-100 year event” simply 

means the event statistically has a 1% chance of starting in any given year. This means that a given 

event is expected to occur, on average, once in repeated samples of 100 year time periods. It is even 

possible to have multiple “100-year” events occur during a 100-year period. 

With this in mind, any given year is a roll of the dice. 

Drivers of epidemic risk
Risk modeling is not simply an exercise in mathematics—it must appropriately represent real-

world processes, and modelers should have familiarity with the complex web of underlying factors 

shaping the risk. Our modeling framework therefore explicitly incorporates several critical drivers 

of epidemic risk, including zoonotic spillover, global travel patterns, and governance challenges. 

Here we provide background information about these processes; specific details of how they are 

incorporated into our models are provided in Annex A.

Nearly all modern pandemics have sparked when zoonotic pathogens have jumped from animals 

to humans, often through activities such as hunting, habitat encroachment, and intensive livestock 

farming (Jones et al., 2013; Olival et al., 2017). Multiple studies have shown that epidemics, especially 

those caused by zoonotic spillover events, are increasing in both frequency and severity (Jones et al., 

2008; Smith et al., 2014). For a subset of high priority viruses, this trend is exponential, meaning 

that not only are epidemics becoming more frequent and more severe but that spillover-driven 

epidemics are occurring at an accelerating rate (Meadows et al., 2023). Climate change and other 

forms of anthropogenic environmental change, such as deforestation and habitat fragmentation, are 

predicted to increase the frequency of zoonotic spillover events because they increase the frequency 

of contact between humans and animal reservoir species (Carlson et al., 2022). 
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Increasing human population density and connectivity through global travel and trade facilitate 

the spread of the outbreaks (Baker et al., 2021). The accessibility of global air travel makes effective 

containment of emerging outbreaks increasingly difficult because infected individuals can disperse 

over large geographic distances before cases are detected and reported to public health officials 

(Meslé et al., 2022). For example, rapid geographical spread was well-documented in the severe acute 

respiratory syndrome (SARS; caused by SARS-CoV-1) outbreak of 2003. One individual infected ten 

people in a Hong Kong hotel, six of whom took international flights to Australia, Canada, Singapore, 

the Philippines, and Vietnam. These traveling secondary cases subsequently led to SARS outbreaks 

in Hanoi, Singapore, and Toronto within a few days of the first reported case in Hong Kong (Cherry, 

2004). Similarly, during the COVID-19 pandemic, early detection of SARS-CoV-2 variants occurred 

in airline passengers (Wegrzyn et al., 2022). Spread by air travel also occurred during the 2014 West 

Africa Ebola epidemic (Gomes et al., 2014).

Experience in infectious disease crises, such as COVID-19 and the 2018 North Kivu Ebola virus 

epidemic, has provided a clear reminder that governance and human behavior play important roles 

in shaping infectious disease transmission. Research on the relationship between governance and 

epidemic risk suggests that political factors also play an important and underappreciated role in both 

frequency and severity of epidemics. Armed conflict and political instability can degrade disease 

surveillance systems, creating “blind spots” and lengthening the period during which disease 

transmission can occur before it is detected and mitigation measures are put in place (Wise & Barry, 

2017). These same factors can also increase the risk of disease spread by facilitating population 

displacement (Price-Smith, 2001). Public distrust of government institutions can also impede 

disease control measures, potentially leading to increased morbidity and mortality (Vinck et al., 2019; 

Bargain & Aminjonov, 2020; Farzanegan & Hofmann, 2022).

Techniques for estimating risk
Apart from research published in DCP-3, there is scant scientific literature dedicated to estimating 

the frequency and severity of infrequent, high-consequence epidemics (Fan et al., 2017; Madhav et al., 

2017). Methods for estimating risk and burden of endemic and frequently-occurring diseases are 

well-described; however, the quantification of risk—especially tail risk—from more sporadically-

occurring epidemics is not explored in major public health or infectious disease epidemiology 

textbooks (Bennett et al., 2019; Nelson & Williams, 2014). Contributions on this topic have instead 

come from interdisciplinary research teams or the private sector (Cirillo & Taleb, 2020; Marani et al., 

2021; Wilkinson, 2021). The relatively limited public health literature on the prospective analysis 

of risk and burden posed by epidemics is perhaps attributable to the multidisciplinary nature of 

the problem, and the development of estimation techniques within fields that have had limited 

interaction with public health researchers.
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Following the conventions from DCP-3, this chapter provides risk estimates in the form of 

exceedance probability functions (EPFs; Table 1) (Madhav et al., 2017). An EPF can be analyzed to 

estimate the probability that an event of a given severity or worse will start in a given year, and other 

metrics of interest, such as the average annual loss (AAL; Table 1).

Modelers can estimate EPFs using empirical data from historical events, or use simulated data from 

modeled events. Empirical EPFs derived from historical data are most appropriate for pathogens that 

cause frequent outbreaks, or have a recurrent or seasonal pattern (for example, seasonal influenza or 

meningococcal meningitis). A historically-derived empirical EPF may be misleading where historical 

data is sparse, marked by underreporting, or includes unincorporated trends that could influence 

future expected losses (Madhav et al., 2021). For these reasons, we generate EPFs using a probabilistic 

modeling approach that generates an event catalog (Table 1) containing simulated events. 

Historical data analysis

Historical data are often the first point of reference for evaluating future risk. While historical 

data can offer valuable insights, constructing a view of future risk based on empirical data can be 

misleading, especially for infrequent events. In this section we highlight the factors that can make 

historical data an unreliable indicator of future risk, which demonstrates why we take an extreme 

events modeling approach to quantify the risk.

Figure 1 shows a hypothetical time series of historical data. In the graph, it is possible to see the 

differences between endemic disease patterns as compared to pandemic disease patterns. In 

this hypothetical 360 weeks—roughly seven years—of data, the endemic disease occurs regularly 

throughout this time period in a relatively well-characterized pattern. This is in contrast to a 

pandemic event, which occurs in a single spike spanning approximately one year. Interestingly, in 

this graph, both the endemic disease and the pandemic disease actually have a similar AAL, but have 

very different characteristics of frequency and severity that lead to those annual average values.

FIGURE 1. Example comparison of timing and magnitude  
of endemic vs. pandemic deaths
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For frequently-occurring infectious diseases having well-characterized historical patterns, 

historical data can yield acceptable estimates of future risk. This is somewhat true for the historical 

record on pandemic influenza which, while having important limitations, does provide evidence of 

several major events per century (Morens et al., 2010). Historical data analysis can reveal changes 

over time, such as increasing frequency and severity of events, rate of increase, and factors 

that drive this dynamic (Meadows et al., 2023). Techniques for estimating risk based solely on 

historical data include, for example, statistical and actuarial modeling and parametric curve fitting 

(Embrechts et al., 1999).

However, the historical record represents only a small subset of the possible events that can occur, 

especially for low probability, high severity events. It therefore represents a limited sample size, 

which can lead to erroneous conclusions about what could occur in the future (Box 2). The absence 

of empirical data in the form of observed events can be mitigated somewhat by considering 

counterfactual events (Resolve To Save Lives, 2021), but this does not necessarily provide information 

about how severe an event would have been if it had occurred. Pandemics are relatively rare, and 

there are large variations in severity. For example, consider the vast difference in mortality between 

the 1918 and 2009 influenza pandemics. 

BOX 2. The importance of tail risk 

The severity distribution of epidemics is highly skewed, exhibiting a very long “tail”, consisting 

of very rare, severe events. When there is a small sample of data points (in this case, historical 

events) from a highly skewed distribution, the “heaviness” of the tail is often underestimated. This 

is problematic, as an accurate understanding of expected losses—especially those caused by less 

frequent, highly damaging events—is needed to appropriately plan for future events.

Figure 2 shows the distribution of cases from historical filovirus events (Meadows et al., 2023), 

and how the fitted distribution changes over time as more events are added. As more events occur 

over time, the tail of the distribution (defined as the upper 1%) gets longer and heavier, which shifts 

the expected value (mean) of the distribution as well as the range and expected value of the tail, 

to the right. There are two explanations for this finding: 1) as the sample size increases over time, 

the sample distribution and mean get closer to the true distribution, or 2) the true distribution is 

becoming more skewed over time, meaning events are getting more severe. The true cause is likely 

a combination of these two factors.

The estimation of tail risk affects decision makers’ preparedness planning. When they have 

limited resources and need to directly weigh epidemic impact against other health risks, properly 

accounted-for tail risk is critical to understanding the expected value of future losses. In addition, 

carefully quantifying tail risk can help planners assess and properly plan for low frequency, 

high severity events. By using epidemiological data and computational modeling, it is possible to 

supplement historical data with simulated events. These simulations can then provide additional 

data points on which to base the distribution, and allow for a more robust estimation of the tail.
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FIGURE 2. Distributions of historical filovirus cases per outbreak over time 
showing the fitted probability density function (red line)

Notes relating to Figure 2:	The	x-axis	shows	a	log	base	10	transformation	of	the	number	of	cases.	The	“tail”	is	defined	 
as	the	upper	1%	of	the	probability	density	function.

Constructing a historical view of epidemic risk is further complicated by the many challenges and 

biases found in reported epidemiological statistics (Badker et al., 2021). These factors can lead to 

data inconsistencies and lack of comparability across different information sources, which further 

compounds the uncertainty in these estimates. These challenges can be found in all types of 

epidemic data, including for both respiratory and VHF events. 

In addition to data challenges, many diseases are underreported, leading to biased estimates 

of severity, which is particularly problematic in resource-limited settings (Glennon et al., 2019). 

Underreporting is driven by many factors including disease symptomology and severity, contextual 

conditions (such as local clinical capacity), which can influence mortality rates, public health and 

disease surveillance infrastructure, socio–cultural factors (such as stigma attaching to particular 

symptoms or diseases), and government censorship (Meadows et al., 2022).

Extreme events modeling

Extreme events (or “catastrophe”) modeling can overcome the challenges of using historical data to 

develop risk estimates for infrequent, high severity events, known as “tail risk” (Box 2) (Cirillo & Taleb, 

2020). For example, the (re)insurance industry routinely consults with modeling experts in natural 

hazard fields such as meteorology, seismology, hydrology, and volcanology for this purpose  

(Kozlowski & Mathewson, 1995). However, these extreme events modeling techniques tend to be 
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taught within, and utilized by, intellectual communities that have limited cross-pollination with 

public health actors.

Extreme event modeling techniques build on historical data as a starting point, and use extensive 

mechanistic modeling and simulation to fill in the gaps beyond the available historical data. The 

extreme events modeling framework also enables analysts to assess the influence of inputs that may 

not exist in the historical record, but are biologically and epidemiologically plausible. For example, 

even if a vaccine or treatment option has not yet been widely used but could potentially be deployed 

in reaction to an outbreak, simulation models can include this treatment where appropriate. 

Where extreme event modeling techniques are applicable, there are still substantial technical and 

analytical requirements for this modeling approach to be effectively utilized. Extreme event models 

typically require significant computational infrastructure and resources, have many parameters 

to estimate, and for epidemics (unlike for natural hazards) must account for the effects of human 

behavior in shaping the course of events.

Methods used in this chapter

Risk estimation process
The risk modeling approach we use to develop the estimates in this chapter draws from principles 

in computational epidemiology, social science, extreme events modeling, actuarial science, and 

other fields to produce millions of simulated epidemics and pandemics. Our process requires us to 

develop probability distributions for each model parameter, statistically sample values from these 

parameter distributions, seed each simulation with these parameter values as initial conditions, and 

then simulate the spatio-temporal spread of the events through a global, stochastic, metapopulation 

disease spread model that incorporates information about population vulnerability, mobility 

patterns, medical technology, preparedness levels, and intervention measures. Comprehensive 

details of our methods are provided in Annex A of this chapter.

We consider an event to be active in our simulations until transmission ceases, whether through 

stochastic die-off, herd immunity, non-pharmaceutical interventions, or other phenomena. We include 

only the acute portion of the events, and do not include any transition to an endemic state. We make this 

assumption due to the lack of consistent epidemiological standards to select cutoff points indicating the 

transition from epidemic to endemic state. As a result, our loss estimates represent a lower bound; they 

do not capture ongoing mortality from endemic transitions, in which a pathogen enters a seasonal or 

cyclic pattern with an ongoing and persistent mortality burden, as occurred during the 1918 influenza 

(Taubenberger & Morens, 2006) and the COVID-19 pandemics (Contreras et al., 2023).

Our simulation process results in model event catalogs (Table 1), each containing 100,000 simulated 

years and encompassing millions of infectious disease scenarios, which we use to estimate the risk 
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from epidemics. It should be noted that our event catalogs do not project 100,000 years into the 

future, but rather, represent 100,000 versions of “next year.” We generate these catalogs separately 

for both respiratory diseases and viral hemorrhagic fevers (VHFs) (Table 1), and our results are also 

divided in this way. We do this for ease of interpretation, because deaths from respiratory diseases 

comprise the vast majority of expected deaths from the epidemics that we have modeled. There are 

orders of magnitude of difference between the levels of potential losses caused by these disease 

categories, and combining them would obscure this asymmetry. Additionally, different types of 

response measures may be more relevant and cost-effective for combating each disease category, 

which is easier to tease apart when loss estimates are separated.

We use these event catalogs to produce several estimates, including average annual loss (AAL, 

measured in deaths), population normalized deaths, exceedance probabilities (EPs), and age- 

and region-specific mortality estimates (region definitions shown in Figure 3 and Annex B). The 

AAL estimates—expected value of annual losses—are shown as normalized deaths per 10,000 

population and deaths in thousands. Population numbers are from the UN Population Division’s 

World Population Prospects 2022 release, using a reference year of 2020, for a total estimated global 

population of 7.8 billion (United Nations Population Division, 2022).

In addition to annual estimates, we also estimate cumulative exceedance probabilities (CEPs) 

over periods of y years using the formula

CEP EP y� � ( )� � �1 1  

where y is the time horizon of interest. In this chapter, the time periods of interest are 5, 10, and 25 

years; however, the CEP can be computed over any potential time period of interest (for example, 

over the lifetime of a person born next year and expected to live to the current global life expectancy 

of approximately 73 years). The CEP is thus another, potentially more useful, way of conveying the 

same information as the annual EP estimates. It demonstrates the potentially large cumulative risk 

posed by rare events and estimates risk for time durations of greater interest to policymakers.

Our CEP estimates contain significant assumptions, but likely represent a reasonable lower bound 

for medium-term pandemic risk. The CEP formula assumes that the risk remains constant at current 

levels and each year of the time period is independent. Our CEP estimates therefore assume that 

there are no changes to underlying drivers of risk that could impact the frequency and severity 

of future epidemics. However, current trends suggest that infectious disease risk is increasing 

(Meadows et al., 2023), driven by increasing human-wildlife contact, deforestation, urbanization, 

intensifying demand for animal protein, and intensifying international travel (Baker et al., 2021; 

Carlson et al., 2022). Our estimates likewise do not incorporate assumptions about the potential 

beneficial impact of new vaccine platforms, improvements to global infectious disease surveillance, 

early warning, and preparedness. On balance, though, the risk is probably higher over the medium 

term future than our assumption of constant risk implies. 
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Direct deaths vs. excess mortality
The modeled deaths we present in this chapter are total direct deaths, rather than reported deaths or 

excess deaths. We consider direct epidemic deaths to be those caused directly by primary infection 

with the pathogen and any immediate secondary effects resulting directly from that infection (e.g., 

pneumonia resulting from infection with pandemic influenza).

It is important to be explicit about what we count as a direct death in this chapter. We adopt 

nomenclature from WHO’s assessment of the number of deaths associated with COVID-19 

(Msemburi et al., 2023). WHO begins with the concept of “excess deaths” which is defined as the 

differences between an estimate of actual deaths in the period under consideration and an estimate 

of what the number of deaths would have been, had past trends continued. WHO’s COVID-19 excess 

mortality estimates were calculated by taking the difference between observed all cause mortality 

and expected mortality in 2020–2021. Expected mortality was modeled by projecting monthly all 

cause mortality data from 2015–2019 to 2021. Msemburi and colleagues estimate global excess 

deaths in the COVID-19 years of 2020 and 2021 to have been 14.8 million, which is 2.7 times the 

5.42 million reported global deaths from COVID-19 during that same time period (Table 2; regional 

groupings provided in Figure 3 and Annex B). They partition these excess deaths into 4 categories:

A. strictly non-COVID-19 deaths (e.g., from other external events such as wars or natural 

disasters);

B. indirect COVID-19 deaths (e.g., deaths occurring from health system overload);

C. direct COVID-19 deaths that were not reported; and

D. direct COVID-19 deaths that were reported (5.42 million).

The excess mortality estimates also account for any deaths that were averted due to pandemic-

related changes in social conditions and personal behaviors (e.g., fewer traffic deaths due to 

reduction in travel and working from home or fewer influenza deaths due to COVID-19 mitigation 

strategies such as masking and stay-at-home orders). In some countries (e.g., China, New Zealand, 

Australia, and Japan), it was estimated that a higher number of deaths were averted due to pandemic-

related behavioral changes than were directly or indirectly attributable to COVID-19, resulting in a 

net negative excess mortality during the 2020–2021 study time period. However, substantial changes 

in disease control policies and disease transmission from 2022 onward led to substantial increases 

in mortality; incorporating data from this time period could substantially alter the understanding of 

the regional distribution of excess mortality from COVID-19.

The WHO analysis attempts no estimate of the division of the 9.4 million excess deaths not reported as 

COVID-19 deaths (14.8 million—5.4 million) among the categories (A), (B) and (C). But the paper does 

observe that “…the greater proportion of excess deaths can be attributed to COVID-19 directly.”

The risk modeling results we provide in this chapter include both reported and unreported direct 

deaths; that is, they represent the sum of categories (C) and (D) described above. While WHO does 
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not report that sum directly, a number consistent with their paper would be 11—12 million direct 

COVID-19 deaths in 2020–21.

TABLE 2. Excess deaths and reported COVID-19 death totals  
for January 2020–December 2021 by region1

Region2 Excess Deaths per 
10,000 Population  
(WHO Modeled)  

(Msemburi et al., 2023)

Reported Deaths  
per 10,000 
Population  

(WHO, 2022b)

Excess to 
Reported Death 

Multiplier

Global 19 7.0 2.7
India 34 3.4 10
Sub-Saharan Africa 11 1.3 8.5
Central Asia 14 2 7
Western Pacific and Asia 12 3.4 3.5
Middle East and North Africa 19 6.6 2.9
Central and Eastern Europe 59 24 2.58
Latin America and Caribbean 35 24 1.5
North Atlantic 22 20 1.1
China3 -0.37 0.04 -9.2

Notes:

1.	 	The	numbers	in	this	table	are	rounded	to	two	significant	digits;

2.	 	Regional	groupings	provided	in	Figure	3	and	Annex	B;

3.	 	Excess	mortality	in	China	greatly	increased	in	December	2022	(after	the	timeframe	of	the	analysis)	following	
decisions	to	end	a	national	policy	that	incorporated	extensive	testing	and	non-pharmaceutical	interventions	to	reduce	
transmission;	excess	deaths	for	the	entirety	of	the	pandemic	would	be	substantially	higher	than	these	estimates.

FIGURE 3. Regional grouping of countries

Notes pertaining to Figure 3:	This	grouping	is	used	in	DCP-4,	Volume	2	and	by	the	Lancet	Commission	on	Investing	 
in	Health.	Annex	B	lists	the	countries	in	each	region.	This	grouping	may	be	subject	to	change	in	future	revisions	 
of	this	paper.
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Limitations & uncertainty in model estimates
Models are abstractions of the real world. Therefore, there are by necessity some limitations of the approach 

we have taken. First, historic data are limited; and though we have taken great care to mitigate this with the 

modeling approach, it is not possible to fully account for gaps and biases in historical data. Second, there are 

many parameters to estimate, all of which have substantial uncertainty. Third, the outcomes of pandemics 

are affected by human behavior and movement patterns, which can vary substantially in specific socio-

economic contexts and subpopulations, or could change over time in surprising ways that may not be fully 

accounted for or characterized in the model. Fourth, models do not fully account for secular trends such as 

the apparent increase in zoonotic spillover events that can spark pandemics, or amplification patterns that 

could arise from the intersection of trends in spillover with the intensification of climate change.

It is worth emphasizing that although we have performed extensive model diagnostics and 

validation—including sensitivity analyses, benchmarking of historical events, and cross-referencing 

against other data sources—substantial uncertainty attaches to our estimates. This uncertainty 

results in part from the historically-informed probability distributions from which we draw key 

parameters for our simulations. Additionally, substantial uncertainties exist in the underlying 

structure of our models and factors that might influence the future evolution of parameters in ways 

poorly reflected in history. Further discussion of uncertainty can be found in Annex A.

In this chapter we estimate 95% confidence intervals for deaths by sampling one thousand subsets of 

10,000-years each from the broader 100,000-year model event catalogs and estimating the 2.5% and 

97.5% percentiles from the samples. As such, the confidence intervals (CIs) convey the uncertainty in 

catalog sampling, rather than the full universe of uncertainty. 

Because of the relatively small width of our estimated CIs for the AAL estimates, and the larger 

uncertainties that surround the analysis, we do not report CIs for the AAL, as this has the potential 

for conveying false precision.

We have calculated CIs associated with our EP estimates; these CIs typically fall in the range of 

5–20% of estimated values, and expand to 40% or more of estimated values as one goes further into 

the tail of the EPF. It is an important feature of the EPF that the confidence intervals widen markedly 

as one moves further out in the tail of the curve. This is expected; estimates for extremely rare, 

massive pandemics are inherently uncertain, given their sparsity.

Further uncertainty is found in the extreme tail of the EPF, due to our models, assumptions regarding 

socio-behavioral responses during epidemics. These assumptions might not hold true under extreme, 

high severity scenarios. For example, in a truly massive event, there could potentially be very intense 

governmental and societal responses to curtail transmission. Major social change could occur 

(e.g., mass quarantine, or compulsory licenses of vaccine intellectual property), leading to better 
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outcomes than we estimate. Conversely, the possibility exists that during a truly massive pandemic, 

there could be a total societal collapse, which would lead to vastly worse outcomes than we estimate.

Our estimates—and in particular, estimates of risk decades into the future—should not be interpreted 

as conveying great precision, due to deep underlying uncertainties. Our headline numbers, rather, 

reflect broad ranges consistent with historical evidence and state-of-the-art modeling. 

Results: respiratory diseases

Global respiratory mortality 
We estimate the average annual loss (AAL) from future epidemics and pandemics caused by the 

modeled respiratory diseases to be approximately 2.5 million deaths. The AAL provides a summary 

measure of the scale of potential losses. Rather than representing the number of deaths that occur 

each year, the AAL arises from a pattern of events that exhibit larger amounts of deaths that occur 

more sporadically and in a punctuated manner (Figure 1). Within the respiratory event catalog, 

pandemic influenza viruses are the predominant contributors to the losses, contributing nearly 

twice as much to the AAL in comparison to epidemic/novel coronaviruses (Table 3). 

TABLE 3. Global average annual deaths based on respiratory model event catalog

Average Annual Deaths
Counts (Thousands) Per 10,000 Population

Pandemic influenza 1,600 2.0
Epidemic/novel coronaviruses 890 1.1
Total 2,500 3.2

An inspection of the EPF (Table 4, Figure 4) shows a heavily skewed (i.e., asymmetrically overdispersed) 

distribution of loss estimates. Smaller events are more likely to occur, but larger events—even 

larger than those historically observed—are also possible and represented further out in the tail 

of the distribution. As the probability decreases (or return period increases), there is an initial, 

rapid increase in the number of deaths, which decelerates as one moves further into the tail of the 

distribution. The steep rise in event severity is apparent in the higher-frequency (i.e., lower return 

period) portion of the curve, perhaps most visibly in the large jump in the number of deaths between 

the 10- and 20-year return periods. While the steepness of the rise decreases further out in the tail, 

the tail events contribute substantially to the skewness of the distribution (Box 2). The steep rise and 

heavy tail of the curve are consistent with the potential for wide transmission and global spread of 

respiratory diseases.
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TABLE 4. Selected exceedance probabilities and associated  
global deaths based on respiratory event catalog

Return Period Exceedance 
Probability

Deaths per 10,000 
Population  

(95% Conf. Int)

Death Counts (Thousands)  
(95% Conf. Int)

5 0.20000 0.001  
(0.001, 0.001)

0.53  
(0.50, 0.55)

10 0.10000 0.002  
(0.002, 0.002)

1.4  
(1.2, 1.5)

20 0.05000 7.2  
(5.4, 10)

5,600  
(4,300, 7,700)

35 0.02857 28  
(23, 32)

22,000  
(18,000, 25,000)

50 0.02000 45  
(39, 53)

35,000  
(30,000, 42,000)

100 0.01000 86  
(74, 100)

68,000  
(58,000, 80,000)

200 0.00500 150  
(120, 180)

110,000  
(100,000, 140,000)

333 0.00300 200  
(160, 220)

150,000  
(130,000, 170,000)

500 0.00200 220  
(200, 260)

170,000  
(150,000, 200,000)

667 0.00150 250  
(210, 290)

190,000  
(170,000, 220,000)

1000 0.00100 280  
(240, 390)

220,000  
(190,000, 300,000)

FIGURE 4. Global respiratory exceedance probability function
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We also used the EPF to estimate the level of mortality found at different EPs (Table 5), and to take 

an in-depth look at the likelihood of an event having mortality of a comparable magnitude to the 

COVID-19 pandemic (Box 3).

TABLE 5. Exceedance probabilities for selected global death  
levels based on respiratory event catalog

Global Severity Likelihood
Death Counts Deaths per 10,000 

Population
Return Period Exceedance 

Probability
>800 >0.001 7 14%
>80,000 >0.01 15 6.8%
>8,000,000 >10 22 4.5%
>80,000,000 >100 120 0.8%

BOX 3. COVID-19 is not a “once in a century pandemic”

The panic and neglect cycle is driven, at least in part, by the historic fact that severe pandemics 

occur infrequently. While the 21st century has seen multiple pandemics—including the 2009 

pandemic influenza and Zika virus—the last public health crisis seemingly comparable in impact 

to COVID-19 was the “Great Influenza” of 1918 (Johnson & Mueller, 2002). Since COVID-19 occurred 

nearly 100 years after the 1918 pandemic, some commentators have described pandemics of this 

scale as occurring “once in a lifetime” (Guterres, 2020) or even “once in a century” (Cruickshank & 

Shaban, 2020; Gates, 2020; WHO, 2020).

At the end of December 2022—the end of the third year of the pandemic—there were over 660 

million reported cases and 6.5 million reported deaths globally from COVID-19 (Ginkgo Bioworks, 

2023). Based on our simulated event catalog, we estimate the annual probability of an event of 

this magnitude or larger to be 0.02–0.03. In other words, every year there is a 2–3% chance that 

an event equal to or more severe than COVID-19 (in terms of mortality) could occur. Expressed 

in terms of return periods, this would be a 33–50 year event, rather than a 100 year event. 

Assuming that the level of risk does not change, we further estimate that there is a 10–14% chance 

(cumulative exceedance probability) of an event as severe as or worse than COVID-19 occurring 

over the next five years, an 18–26% chance over the next decade, and a 40–53% chance over the 

next 25 years.

COVID-19 was more severe than other recent respiratory pandemics, such as the 1957, 1968, and 

2009 influenza pandemics. However, comparing COVID-19 to the 1918 Influenza pandemic, as 

many have recently done, sets up a false equivalency. As Table A.13 (see Annex A) shows, as a 

percent of global population mortality the 1918 pandemic was orders of magnitude more severe 

than COVID-19, as it led to the deaths of up to 5% of the global population; compare this to the 

estimated 0.08% global mortality from COVID-19 as of December 2022, based on reported deaths.
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Our estimates of the frequency and severity of pandemics, rooted in extreme events modeling 

techniques, demonstrate that COVID-19 is not likely to be a “once in a century” pandemic. To the 

contrary, over the next 25 years, we estimate that a pandemic with magnitude similar to or worse 

than COVID-19 has a roughly 50% probability of occurrence, similar to flipping a coin.

Because severe respiratory pandemics occur sporadically and have a relatively low (perceived) 

probability of occurrence in any given year, policymakers tend to underinvest in preparedness 

(Sands et al., 2016). Viewed over a time-horizon that is longer—but still relevant to policymakers and 

planners—the substantial magnitude of the risk from rare, potentially catastrophic events becomes 

more apparent (Table 6). For example, we estimate that the annual probability of a respiratory 

pandemic killing at least 10 million people worldwide is 4.2%; yet, over a 10 year period, the 

probability of such an event occurring is 35%. Extrapolated further, our results suggest that over the 

next 25 years, there is a 66% probability of a respiratory pandemic that would kill 10 million people 

or more, with the caveat that many of the assumptions in our risk modeling approach have greater 

uncertainty over a longer time period.

TABLE 6. Annual, 5 year, 10 year, and 25 year exceedance probability (EP) 
estimates for selected global event sizes based on the respiratory event catalog

Deaths Annual EP 5 Year EP 10 Year EP 25 Year EP
1,000,000 6.3% 28% 48% 80%
10,000,000 4.2% 19% 35% 66%
100,000,000 0.6% 3.0% 5.8% 14%

Although the respiratory model event catalog contains a wide range of event sizes, we estimate 

that the vast majority of the risk from respiratory disease pandemics is in the tail of the EPF: low 

probability, high impact events. Approximately 50% of the simulated events in the catalog are very 

small, with an average magnitude of 120 global deaths. Roughly 4% of events have 8 million or 

more global deaths. Only 0.6% of events have global death tolls exceeding 100 million. It is striking, 

however, that the comparatively small number of high-magnitude events heavily drive the estimates 

of expected mortality. The 1.4% of catalog events with death totals exceeding 50 million comprise 

68% of all deaths in the respiratory catalog (Figure 5, Table 7). Although the higher-frequency events 

(≤35 yr RP) make the lowest contribution to AAL as measured in deaths (Table 7), these events can still 

cause substantial economic disruption (Madhav et al., 2017).
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FIGURE 5. Respiratory catalog composition: simulated  
event sizes and their contribution to expected losses

Panel A: % of events Panel B: % of deaths

TABLE 7. Composition of average annual loss (AAL) for respiratory  
catalog by event severity and event frequency

AAL by Event Severity AAL by Event Frequency
Severity (Millions  

of Deaths Globally)
Contribution to AAL,  

Thousands (%)
Frequency Indicated  

by Return Period (Years)
Contribution to AAL, 

Thousands (%)
200+ 450 (18%) ≤10 0.23 (0.01%)
100–200 670 (27%) 10–35 310 (13%)
50–100 560 (23%) 35–100 720 (29%)
8–50 720 (29%) 100–200 440 (18%)
<8 77 (3.1%) 200+ 1,000 (40%)
Total 2,500 (100%) Total 2,500 (100%)

Respiratory mortality by region
Respiratory diseases have a substantial expected impact on all geographies. However, risk is 

unevenly distributed (See Figure 3 and Annex B for detailed information on the regional country 

groupings). The highest normalized AAL is in Sub-Saharan Africa and lowest normalized AAL is in 

the North Atlantic region (Table 8, Figure 6).
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TABLE 8. Average annual deaths by region based  
on respiratory model event catalog

Region Average Annual Deaths  
per 10,000 Population  

(95% Conf. Int)

Average Annual  
Deaths (Thousands)  

(95% Conf. Int)
Global 3.2 2,500
Central and Eastern Europe 2.5 82
Central Asia 4.4 160
China 2.4 340
India 3.2 450
Latin America and Caribbean 2.8 180
Middle East and North Africa 3.0 160
North Atlantic 2.2 180
Sub-Saharan Africa 5.0 580
Western Pacific and Asia 3.0 340

FIGURE 6. Average annual respiratory disease deaths, by region

At first glance, our findings of higher expected mortality in Sub-Saharan Africa may appear 

inconsistent with the relatively low levels of reported mortality from the COVID-19 pandemic in 

Africa, as compared to other regions. Notably, the ratio of the population normalized AAL between 

Sub-Saharan Africa and the North Atlantic region as derived from Table 8 is roughly 2:1. This ratio is 

contrary to patterns of estimated excess mortality during the COVID-19 pandemic (Table 2), which 

shows higher mortality levels in the North Atlantic compared to Sub-Saharan Africa. 
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Multiple factors likely contribute to this apparent discrepancy. First, evidence suggests that 

there is significant underreporting in the official statistics—moreso in Sub-Saharan Africa 

than in the North Atlantic region. A higher mortality burden for Sub-Saharan Africa was found 

through estimates that draw on seroprevalence data to estimate mortality while correcting for 

underreporting (Kogan et al., 2022). Second, the age distribution of deaths is likely to play a role. 

Comparative mortality ratios show a much higher mortality burden for Sub-Saharan Africa, 

especially when accounting for the region’s younger age distribution (Ledesma et al., 2023). Note 

that this could be a factor somewhat specific to COVID-19; a future respiratory pandemic could 

have a different pattern, potentially leading to a different spread in future expected losses. Third, 

mortality displacement may be playing a role. Both age effects and mortality displacement are 

discussed in the Respiratory Mortality by Age Group section, below.

Respiratory mortality by age group
AAL results by age group are also available in the respiratory model event catalog. Figure 7 shows 

a graph of the global normalized average annual deaths per 10,000 population by age group for 

respiratory pandemics. Table 9 contains the graphed values, including median and 95% confidence 

intervals for each age group.

These results show that members of the oldest two population groups are most likely to die during a 

respiratory pandemic, followed by the youngest in the population. The overall mortality rates exhibit 

a slight W-shaped pattern (Morens et al., 2021), although respiratory diseases can exhibit a number 

of different mortality patterns (for example U or J). The determinants of this pattern are not well 

understood, but may be related to immunity patterns in the population (van Wijhe et al., 2018). 

Increased mortality, especially in older age groups, can lead to what is known as mortality 

displacement, or the “harvesting effect.” When this occurs, there is a compensatory decrease in 

mortality after a pandemic, since the individuals who died in the pandemic would have been likely 

to die whether or not the pandemic occurred. This effect has been observed during influenza 

pandemics (Hoffman & Fox, 2019), as well as the COVID-19 pandemic (Astengo et al., 2021).

Beyond the oldest and youngest ages who are at greatest mortality risk during a respiratory 

pandemic, the age groups having the next greatest risk are the 20- to 39-year-old and 40- to 

59-year-old categories. The increased mortality for the 20–39 age category is especially concerning 

from the standpoint of fertility, along with economic losses, as this age category includes prime 

members of the labor force who would be conducting economically productive activities. Therefore, 

epidemics having a W-shaped mortality pattern are more likely to cause the greatest economic loss 

(Ma et al., 2011). 
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FIGURE 7. Average annual respiratory disease deaths, by age group

While the above results are averaged over the entire set of simulations, there are many potential forms 

that the age distribution can take for any single epidemic, and these may differ from distributions 

observed in previous epidemics. Illustrative examples of various age distributions are shown in Figure 8.

FIGURE 8. Illustrative respiratory disease age shapes

Note pertaining to Figure 8:	Relative	deaths	represent	the	percent	of	normalized	deaths	in	an	age	category	compared	to	the	
age	category	having	the	highest	normalized	deaths.
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TABLE 9. Global average annual deaths by age group based  
on respiratory model event catalog

Age Group  
(Years)

Average Annual Deaths  
per 10,000 Population  

in that Age Group  
(95% Conf. Int)

Average Annual  
Deaths in that Age  
Group (thousands)  

(95% Conf. Int)
Under 1 5.0 66
1–9 1.6 200
10–19 0.89 110
20–39 3.0 710
40–59 3.0 530
60–79 6.9 620
80–110 15 220
Global Total 3.2 2,500

Results: viral hemorrhagic fevers (VHFs)

VHF mortality in Sub-Saharan Africa
Viral hemorrhagic fevers (VHFs), such as those caused by Ebola, Marburg, and Nipah viruses, can be 

highly fatal, and human-to-human transmission can spark large, sustained epidemics. However, the 

severity of disease, distinctive signs and symptoms after the prodromal phase, and direct contact 

transmission mechanism all reduce the likelihood of wide international spread. Sub-Saharan Africa 

represents the vast majority of global VHF losses—approximately 72%. As such, we focus our analysis 

on this region. Sub-Saharan Africa regional estimates for the VHF catalog are presented below, 

including AALs and EPs. 

We estimate the AAL from future VHF epidemics in Sub-Saharan Africa to be approximately 19,000 

deaths (Table 10). This represents a small fraction of expected losses in comparison to respiratory 

pandemics. The EPF for VHFs exhibits a skewed distribution, though it is less skewed than the heavy-

tailed loss distribution for respiratory diseases (Table 11, Figure 9).

TABLE 10. Sub-Saharan Africa average annual deaths based  
on VHF model event catalog

Average Annual Deaths
Per 10,000 Population Counts (Thousands)

Viral Hemorrhagic Fevers (VHFs) 0.17 19
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TABLE 11. Sub-Saharan Africa deaths at selected exceedance  
probability points, based on VHF event catalog

Return Period Exceedance 
Probability

Deaths per 10,000 
Population  

(95% Conf. Int)

Death Counts, 
Thousands  

(95% Conf. Int)
5 0.20000 0.01  

(0.01, 0.01)
1.3  

(1.2, 1.4)
10 0.10000 0.06  

(0.05, 0.06)
6.3  

(5.6, 7.1)
20 0.05000 0.24  

(0.21, 0.29)
28  

(24, 33)
35 0.02857 0.69  

(0.59, 0.85)
80  

(67, 98)
50 0.02000 1.4  

(1.1, 1.8)
160  

(130, 210)
100 0.01000 4.2  

(3.3, 5.3)
480  

(380, 610)
200 0.00500 8.4  

(6.7, 10)
970  

(770, 1,200)
333 0.00300 12  

(10, 15)
1,400  

(1,100, 1,700)
500 0.00200 16  

(13, 20)
1,800  

(1,400, 2,300)
667 0.00150 18  

(14, 24)
2,100  

(1,600, 2,800)
1000 0.00100 22  

(17, 30)
2,500  

(2,000, 3,400)

FIGURE 9. Viral hemorrhagic fever exceedance probability  
function for Sub-Saharan Africa
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Our EPF estimates suggest that outbreaks such as the 2014 West Africa and the 2018 and 2021 

Ebola virus disease epidemics in North Kivu are not aberrant events, but instead reflect the 

risk profile of the region. Our modeling framework produces simulated events on the scale 

and duration of these events, along with events that are much larger than what have been 

historically observed. Our model results suggest that larger VHF epidemics are more likely 

to occur than might be assumed if one derives risk estimates based on historical data alone 

(Box 2). Furthermore, the frequency and severity of VHF epidemics in Sub-Saharan Africa have 

increased in recent years (Stephens et al., 2022); if this trend continues, the risk of VHF events 

in Sub-Saharan Africa will increase even more over time. 

As shown in Table 12, we estimate that a VHF epidemic causing approximately 10,000 deaths 

has an 8% annual probability of occurrence; viewed over a 10-year period, the risk of such an 

event occurring is roughly 57%. An event 5 times that magnitude, causing 50,000 deaths within 

Sub-Saharan Africa, has a roughly 3.7% annual probability. Such an event lies outside the range of 

historical experience, and appears improbable given the small annual probability; however viewed 

over a 10 year time period, it has a 31% probability of occurrence. Over a 25 year period, this increases 

to a 61% probability of occurrence.

TABLE 12. Annual, 5 year, 10 year, and 25 year exceedance  
probability (EP) estimates for selected Sub-Saharan Africa event sizes  

based on the VHF model event catalog

Deaths Annual EP 5 Year EP 10 Year EP 25 Year EP
10,000 8.1% 34% 57% 88%
50,000 3.7% 17% 31% 61%
100,000 2.6% 12% 23% 48%

In the VHF model event catalog for Sub-Saharan Africa, total event sizes in death counts are smaller 

in magnitude than the respiratory catalog. Even so, about 2.5% of the events in the VHF model event 

catalog have at least 100,000 Sub-Saharan Africa regional deaths, while nearly 50% of all deaths in 

the catalog are from events having 1 million deaths or more in Sub-Saharan Africa (Figure 10).
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FIGURE 10. VHF catalog composition: simulated event sizes  
and contribution to expected losses

Panel A: % of events Panel B: % of deaths

VHF mortality by age group
We calculated AAL for each of the modeled age groups. In contrast to the respiratory disease catalog, 

the normalized average annual deaths per 10,000 population varies considerably less across age 

groups. Figure 11 contains a graph of the normalized average annual deaths per 10,000 population 

for the VHF modeled event catalog in Sub-Saharan Africa. The graphed values are in Table 13. This 

analysis suggests that VHFs are more universally fatal, with mortality less differentiated by age than 

as seen with respiratory diseases (Garske et al., 2017; Rosello et al., 2015).

FIGURE 11. Average annual viral hemorrhagic fever deaths, by age group
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TABLE 13. Sub-Saharan Africa average annual deaths  
by age group based on VHF event catalog

Age Group Average Annual Deaths  
per 10,000 Population  

in that Age Group  
(95% Conf. Int)

Average Annual Deaths  
in that Age Group  

(Thousands)  
(95% Conf. Int)

Under 1 0.17 0.66
1–9 0.17 5.3
10–19 0.17 4.4
20–39 0.17 5.5
40–59 0.15 2.2
60–79 0.16 0.79
80–110 0.16 0.07
Sub-Saharan Africa Total 0.17 19

Discussion

Magnitude of epidemic & pandemic risk
The simulation-based results we present in this chapter demonstrate the scale of the risk posed 

by pathogens of epidemic potential. The estimated global average annual loss (AAL) of 2.5 million 

deaths represents a larger and more comprehensive accounting of the risk than was presented in 

DCP-3 (Fan et al., 2017; Madhav et al., 2017). The view of risk presented here—in particular the focus on 

losses in terms of deaths—also clearly represents a lower-bound estimate of total potential impact, 

since it does not include other sources of loss to human health and livelihoods (e.g., infections, 

hospitalizations, long-term sequelae, economic shocks, impacts on education, and societal 

disruption), nor—as we note above—does it include all sources of epidemic risk, such as vector-borne 

pathogens, bacterial infections, and viral threats presently unknown to science.

Our results also suggest that, among the diseases we modeled, respiratory diseases are the dominant 

driver of epidemic risk, with VHFs representing a relatively modest global risk in terms of expected 

deaths. VHFs are deadlier on an individual level, but less prone to spread than respiratory diseases. 

However, the risk is not negligible, especially in Sub-Saharan Africa, and merits attention based on 

the direct and indirect impacts of these events on lives and livelihoods (Sochas et al., 2017). 

Effective priority setting in global health requires the comparison of disparate burdens and risks, 

some of which operate on different timescales. As such, it may be helpful to understand how our 

expected mortality estimates compare to other risks. It might seem intuitive to compare epidemic 

AAL to the annual mortality burden caused by endemic diseases, as these both represent average 

deaths per year. For example, the average annual deaths we estimate for respiratory epidemics is 

comparable in magnitude to the annual number of deaths caused by routinely-occurring endemic 

lower respiratory infections—approximately 2.4 million deaths (Troeger et al., 2018). However, when 
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comparing such estimates, it is important to keep in mind that the underlying patterns leading to 

these averages are very different. While the average annual deaths from endemic diseases is made 

up of moderate levels of loss that occur regularly, the epidemic AAL represents much larger spikes 

in losses that occur sporadically, punctuating stretches of non-epidemic years (Figure 1). Mortality 

spikes caused by low frequency, high severity events are potentially more economically disruptive 

than regularly-occurring endemic disease, suggesting that, even when AALs may be similar 

between both types of diseases, planning efforts towards high-impact epidemics should at least be 

equal to, if not greater than, endemic diseases.

Our model results also show that tail risk cannot be ignored. Low frequency, high severity events—

the tail in our results—heavily drive expected deaths. It is all too easy to unconsciously discount the 

risk that the tail represents. The underrepresentation of extreme events in small sample sizes can 

lead policymakers to underweight their probability, especially when relying on a limited and biased 

historical dataset (Slovic & Weber, 2013). Moreover, the low annual probability of such extreme events 

tends to cause policy makers to round this probability down towards zero, due to cognitive biases that 

draw attention towards the frequency component of risk rather than the joint product of frequency 

and severity.

To compensate for this discounting bias, we have presented risk estimates for key points on the EPFs 

in terms of probability of occurrence over the next 5, 10 and 25 years. The results demonstrate how 

seemingly minute risks are far more substantial when viewed over a time horizon that is somewhat 

longer, but still relevant in terms of policy making and budgeting. Over a 10-year view, an event on 

the scale of COVID-19 has a roughly 25% probability of occurrence; over the next 25 years, such an 

event has a likelihood roughly equivalent to a coin toss. These estimates demonstrate that future 

epidemic risk is more substantial than commonly believed, and that severe events are likely to occur 

much more frequently than “once in a century” (Box 3).

Prevention, mitigation, and response strategies
The estimates that we present in this chapter do not, on their face, provide much cause for optimism. 

The expected losses from epidemic risk are enormous, and our results point to the considerable 

potential for pandemics that dwarf COVID-19 in terms of human impacts. But expectations can 

change. The risk estimates we presented are not immutable. Risk could increase if the global 

community does not take meaningful steps to address the underlying drivers of risk. Conversely, 

risk can be reduced through investments in prevention (e.g., spillover risk reduction), surveillance, 

preparedness, and response, which can be achieved through investments spanning basic necessities 

to technological innovations.

General investments in health system strengthening can significantly reduce epidemic losses, 

including those caused by respiratory diseases and VHFs. Because other important determinants 

outside of direct investment—such as technologies to produce medical countermeasures—may also 
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have changed over time, it is difficult to compare the benefits of improving preparedness between 

sporadic, severe crises. These investments can easily appear to be wasted on threats that do not 

materialize. Yet, investments to prepare for severe epidemics can also support effective responses 

to smaller events and other infectious disease risks, even in inter-pandemic periods. Such general 

investments having far-reaching benefits include, for example, improved laboratory capacity for 

rapid detection and confirmation of infectious disease threats (Wacharapluesadee et al., 2020), 

and border monitoring programs to track the importation risk of high-consequence pathogens 

(Wegrzyn et al., 2022). These improvements can also keep surveillance and response infrastructure 

“warm,” that is, in continuous operational performance so it may persist in a constant state of 

readiness. Surveillance and response systems need to operate continuously, both between and 

during epidemics—so that they can be constantly utilized and stress-tested, and also so they 

can detect epidemics in the earliest days of their spark and emergence, since early action has 

the potential for greatest impact. Ultimately, building these capacities will provide the greatest 

opportunity to stop an outbreak before it becomes an epidemic, or globally catastrophic pandemic. 

Localized outbreaks and smaller epidemics provide additional risk mitigation possibilities. For 

example, due to the more localized nature of VHFs, the spark location is more influential to the 

overall mortality for VHFs than for respiratory diseases (Madhav et al., 2020), and potential spark 

locations are good candidates for spillover reduction efforts. Additionally, for VHFs, interventions 

often are implemented with a more localized approach than respiratory diseases. For example, 

health officials have employed ring-vaccination, in contrast to mass vaccination, with Zaire 

ebolavirus vaccines and Marburg vaccine candidates (Cross et al., 2022). Furthermore, since localized 

epidemics are more geographically constrained, there is a greater likelihood for international 

cooperation because neighboring countries, and the international community, can spare more 

resources—such as workforce, supplies, and financial assistance—towards the affected country, and 

this can greatly improve outcomes.

Importance of a risk-informed lens
While it is impossible to predict the timing and magnitude of the next epidemic, risk modeling can 

provide informed views of the potential frequency and severity of future epidemics. The key question 

is: what exactly should the world be preparing for? Effectively preparing for an event as severe as 

the 1918 influenza pandemic could require very different strategies and levels of investment than 

would be needed, for example, to prepare for a COVID-19-level event. While it is infeasible and 

resource-inefficient to plan for every epidemic that could possibly occur, plans should be flexible and 

adaptable, to handle a wide range of possibilities. Careful consideration of the full range of potential 

epidemic scenarios can ensure that preparedness and response plans are commensurate with the 

level of risk, by guiding discussions about the types of surveillance and response systems that must 

be built, and the level of financing that is required. A risk-informed approach can help governments 
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make better decisions around preparedness, to ensure that the world is ready for the next pandemic 

while making efficient use of limited resources.

Decision makers traditionally have used a risk-informed analysis framework to prepare for other 

hazards besides epidemics. For example, in the design of wind loads for bridges, engineers often 

use a 2% annual probability (50-year return period) as a guideline (Garlich et al., 2015). Similarly, 

engineers may build urban road drainage systems to handle the flood risks from a precipitation 

event having a 2% annual probability (50-year return period), while they may build high-risk levees 

to withstand floods up to a 0.1% annual probability (1,000-year return period), due to the catastrophic 

consequences of failure (Ponce, 2008). Discussion of the suitability of these particular risk tolerance 

thresholds, and whether they should be adopted in planning for epidemic and pandemic risk, is 

important for risk-informed policymaking and effective resource allocation, but beyond the scope of 

this chapter. Further discussion may be found elsewhere (for example, see Strouth, et al., 2019).

Planners and decision makers can likewise develop risk-informed epidemic preparedness, 

mitigation, and response plans, relying on EPFs to provide necessary metrics. In practice, based on 

country resources and risk tolerance, decision makers would work towards a preparedness target 

for their country—for example, to be ready for an epidemic at a 5% annual probability (20 year return 

period). Being prepared to this level would imply that a country could effectively respond to an 

epidemic of that magnitude and bring it under containment. Countries could determine what their 

acceptable risk thresholds are for epidemics by using existing frameworks such as the Precautionary 

Principle or As Low As Reasonably Practicable (ALARP) (Pike et al., 2020).

To meet these risk thresholds, risk models can provide further details to help to design and 

calibrate specific investments. Risk modeling shows that transmissibility and case fatality ratio 

greatly influence overall epidemic severity for both respiratory pathogens and VHFs. Thus, the 

most impactful intervention measures for reducing mortality should target investments that 

reduce these factors. Towards this aim, risk modeling can be used to estimate stockpile sizes and 

resource needs for personal protective equipment, diagnostic tests, vaccine doses, antiviral drugs, 

and other therapeutics; as well as the effects of intervention timing; and the costs associated with 

implementing these measures. Risk models can also help countries to develop financing strategies, 

including risk transfer mechanisms, to offload portions of risk and response that are beyond their 

immediate budgetary capacity (Asian Development Bank, 2022; Madhav et al., 2020).

Larger epidemics require higher-level planning and may need to include provisions for regional 

cooperation to have the greatest chance at success. For example, developing regional vaccine 

manufacturing facilities may be a cost-effective and politically viable approach to building surge 

production capacity (Jha et al., 2021).

International standards for preparedness could also take a risk-informed approach, for example by 

setting benchmarks for risk tolerance and minimum preparedness levels to counter the potential 
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for a “weakest link” effect. Such a model could, for example, require that all countries be prepared to 

respond effectively to a respiratory event at the 5% annual probability level. This type of requirement 

could augment assessments such as the Joint External Evaluation (JEE), which sets standards for the 

prevention, preparedness and response systems capacities that countries must have in place, but 

does not specify what level of risk mitigation or reduction those capacities can achieve. Requiring 

that countries meet a common standard for risk tolerance and preparedness would also require 

sustained financing to meet and maintain the necessary capacities. For many low and middle-

income countries, financing preparedness and response capacities is challenging, due to budgeting 

constraints and competing health system priorities, such as high-burden endemic diseases. 

However, early detection and mitigation of pathogens with epidemic and pandemic potential are 

a global public good, which protects the health, national security, and economic prosperity of all 

countries. Given the scale of the risk, the G20 High Level Independent Panel on Financing the Global 

Commons for Pandemic Preparedness and Response proposed a dramatic scale-up of financing, 

including substantial aid for low and middle income countries (Shanmugaratnam et al., 2021), which 

would allow these countries to meet minimum preparedness and response thresholds. One of the 

primary barriers to effective—and effectively-scaled—collective action is uncertainty regarding 

the magnitude and timing of future pandemics. This type of uncertainty has the well-characterized 

problem of leading to market failure (Arrow 1963)—in this case, underinvestment in global public 

goods such as surveillance and response capacities. 

A risk-informed view can also prevent policymakers from falling victim to recency bias and over-

calibrating to historical experience. For years, historical influenza pandemics were the planning 

benchmark for pandemic preparedness (US Department of Health and Human Services, 2005). The 

experience of the relatively mild 2009 influenza pandemic led some analysts to conclude that the 

global community had “overplanned” and overinvested (Low & McGeer, 2010). This may have even 

fueled the complacency and neglect that led to shortcomings in the global COVID-19 response. As 

the most recent severe pandemic, COVID-19 is likely to become a de facto planning benchmark. The 

modeling results we present here suggest that doing so would be short-sighted. Multiple pandemics 

have occurred over the past century, with varying characteristics and magnitudes. Extreme events 

modeling shows that a wider range of scenarios is possible and should be taken into consideration, 

to limit the risk of strategic surprise (Fukuyama, 2008). Furthermore, our model results suggest and 

historical experience corroborates that events more severe than previous historical observations 

can and do occur. The 2014 West Africa Ebola epidemic, which exceeded deaths during prior Ebola 

outbreaks by two orders of magnitude, vividly illustrates this point. 

The results presented in this chapter strongly suggest that epidemic risk is far more persistent and 

substantial than is commonly believed. The probability exists that an epidemic—or even a large 

pandemic—could start in any year (Box 1). Our results demonstrate the urgency and priority of 

action to mitigate the risk. Armed with this knowledge, the world can be ready for the next major 

pandemic—which, in all likelihood, will not wait one hundred years to find us.



ESTIM ATED FUTURE MORTALIT Y FROM PATHOGENS OF EPIDEMIC 

AND PANDEMIC POTENTIAL

33

References
Arrow, K.J., (1963). Uncertainty and the welfare economics of medical care. The American Economic 

Review. 53(5), 941–973.

Asian Development Bank. (2022). Building Resilience to Future Outbreaks: Infectious Disease  

Risk Financing Solutions for the Central Asia Regional Economic Cooperation Regio.  

http://dx.doi.org/10.22617/TCS220010-2.

Astengo, M., Tassinari, F., Paganino, C., Simonetti, S., Gallo, D., Amicizia, D., Piazza, M. F.,  

Orsi, A., Icardi, G., & Ansaldi, F. (2021). Weight of risk factors for mortality and short-term 

mortality displacement during the COVID-19 pandemic. Journal of Preventive Medicine and 

Hygiene, 62(4), E864.

Badker, R., Miller, K., Pardee, C., Oppenheim, B., Stephenson, N., Ash, B., Philippsen, T., Ngoon, C., 

Savage, P., Lam, C., & Madhav, N. (2021). Challenges in reported COVID-19 data: Best practices and 

recommendations for future epidemics. BMJ Global Health, 6(5), e005542. https://doi.org/10.1136/

bmjgh-2021-005542.

Baker, R. E., Mahmud, A. S., Miller, I. F., Rajeev, M., Rasambainarivo, F., Rice, B. L., Takahashi, S., Tatem, 

A. J., Wagner, C. E., Wang, L.-F., Wesolowski, A., & Metcalf, C. J. E. (2021). Infectious disease in an 

era of global change. Nature Reviews Microbiology. https://doi.org/10.1038/s41579-021-00639-z.

Bargain, O., & Aminjonov, U. (2020). Trust and compliance to public health policies in times of COVID-19.  

Journal of Public Economics, 192, 104316.

Bennett, J. E., Dolin, R., & Blaser, M. J. (2019). Mandell, douglas, and bennett’s principles and practice  

of infectious diseases E-book. Elsevier Health Sciences.

Carlson, C. J., Albery, G. F., Merow, C., Trisos, C. H., Zipfel, C. M., Eskew, E. A., Olival, K. J., Ross, N., 

& Bansal, S. (2022). Climate change increases cross-species viral transmission risk. Nature, 

607(7919), 555–562.

CDC. (2021). What are VHFs? https://www.cdc.gov/vhf/about.html.

Cherry, J. D. (2004). The chronology of the 2002–2003 SARS mini pandemic. Paediatric  

Respiratory Reviews, 5(4), 262–269.

Cirillo, P., & Taleb, N. N. (2020). Tail risk of contagious diseases. Nature Physics, 16(6), 606–613.

Contreras, S., Iftekhar, E. N., & Priesemann, V. (2023). From emergency response to long-term 

management: The many faces of the endemic state of COVID-19. The Lancet Regional 

Health–Europe.

Cross, R. W., Longini, I. M., Becker, S., Bok, K., Boucher, D., Carroll, M. W., Díaz, J. V., Dowling, W. E., 

Draghia-Akli, R., & Duworko, J. T. (2022). An introduction to the Marburg virus vaccine 

consortium, MARVAC. PLoS Pathogens, 18(10), e1010805.

http://dx.doi.org/10.22617/TCS220010-2
https://doi.org/10.1136/bmjgh-2021-005542
https://doi.org/10.1136/bmjgh-2021-005542
https://doi.org/10.1038/s41579-021-00639-z
https://www.cdc.gov/vhf/about.html


ESTIM ATED FUTURE MORTALIT Y FROM PATHOGENS OF EPIDEMIC 

AND PANDEMIC POTENTIAL

34

Cruickshank, M., & Shaban, R. Z. (2020). COVID‐19: Lessons to be learnt from a once‐in‐a‐century 

global pandemic. Journal of Clinical Nursing, 29(21–22), 3901.

Diallo, M.S.K., Rabilloud, M., Ayouba, A., Touré, A., Thaurignac, G., Butel, C., Kpamou, C., Barry, T.A., 

Sall, M.D., Camara, I. & Leroy, S. (2019). Prevalence of infection among asymptomatic and 

paucisymptomatic contact persons exposed to Ebola virus in Guinea: A retrospective, cross-

sectional observational study. The Lancet Infectious Diseases, 19(3), 308–316.

Embrechts, P., Resnick, S. I., & Samorodnitsky, G. (1999). Extreme value theory as a risk management 

tool. North American Actuarial Journal, 3(2), 30–41.

Fan, V. Y., Jamison, D., & Summers, L. H. (2017). The Loss from Pandemic Influenza Risk. In D. Jamison 

(Ed.), Disease Control Priorities: Improving Health and Reducing Poverty (world; 3rd ed.,  

Vol. 9). World Bank.

Farzanegan, M. R., & Hofmann, H. P. (2022). A matter of trust? Political trust and the COVID-19 

pandemic. International Journal of Sociology, 52(6), 476–499.

FEMA. (2016). The 100 Year Flood Myth. https://training.fema.gov/hiedu/docs/hazrm/handout%203-5.pdf.

Fraser, C., Riley, S., Anderson, R. M., & Ferguson, N. M. (2004). Factors that make an infectious disease 

outbreak controllable. Proceedings of the National Academy of Sciences of the United States  

of America, 101(16), 6146–6151. https://doi.org/10.1073/pnas.0307506101.

Fukuyama, F. (2008). Blindside: How to anticipate forcing events and wild cards in global politics. 

Rowman & Littlefield.

Garlich, M. J., Pechillo, T. H., Schneider, J. M., Helwig, T., O’Toole, M. A., Kaderbek, S.-L. C., Grubb, M. A., &  

Ashton, J. (2015). Engineering for Structural Stability in Bridge Construction. United States. Federal 

Highway Administration. Office of Bridge Technology.

Garske, T., Cori, A., Ariyarajah, A., Blake, I. M., Dorigatti, I., Eckmanns, T., Fraser, C., Hinsley, W., 

Jombart, T., Mills, H. L., Nedjati-Gilani, G., Newton, E., Nouvellet, P., Perkins, D., Riley, S., 

Schumacher, D., Shah, A., Kerkhove, M. D. V., Dye, C., … & Donnelly, C. A. (2017). Heterogeneities  

in the case fatality ratio in the West African Ebola outbreak 2013–2016. Phil. Trans. R. Soc.  

B, 372(1721), 20160308. https://doi.org/10.1098/rstb.2016.0308.

Gates, B. (2020). Responding to Covid-19—A once-in-a-century pandemic? New England Journal  

of Medicine, 382(18), 1677–1679.

Ginkgo Bioworks. (2023). Spatiotemporal data for 2019-Novel Coronavirus Covid-19 Cases and deaths. 

Humanitarian Data Exchange. https://data.humdata.org/dataset/2019-novel-coronavirus-cases.

Glennon, E. E., Jephcott, F. L., Restif, O., & Wood, J. L. N. (2019). Estimating undetected Ebola spillovers. 

PLOS Neglected Tropical Diseases, 13(6), e0007428. https://doi.org/10.1371/journal.pntd.0007428.

https://training.fema.gov/hiedu/docs/hazrm/handout%203-5.pdf
https://doi.org/10.1073/pnas.0307506101
https://doi.org/10.1098/rstb.2016.0308
https://data.humdata.org/dataset/2019-novel-coronavirus-cases
https://doi.org/10.1371/journal.pntd.0007428


ESTIM ATED FUTURE MORTALIT Y FROM PATHOGENS OF EPIDEMIC 

AND PANDEMIC POTENTIAL

35

Gomes, M. F. C., Pastore y Piontti, A., Rossi, L., Chao, D., Longini, I., Halloran, M. E., & Vespignani, A. 

(2014). Assessing the International Spreading Risk Associated with the 2014 West 

African Ebola Outbreak. PLoS Currents. https://doi.org/10.1371/currents.outbreaks.

cd818f63d40e24aef769dda7df9e0da5.

Guterres, A. (2020). All hands on deck to fight a once-in-a-lifetime pandemic. The United Nations 

COVID-19 Response.

Han, B. A., Kramer, A. M., & Drake, J. M. (2016). Global Patterns of Zoonotic Disease in Mammals. 

Trends in Parasitology, 32(7), 565–577. https://doi.org/10.1016/j.pt.2016.04.007.

Hoffman, B. L., & Fox, D. P. (2019). The 1918–1920 H1N1 Influenza A pandemic in Kansas and Missouri: 

Mortality patterns and evidence of harvesting. Transactions of the Kansas Academy of Science, 

122(3–4), 173–192.

Jamison, D. T., Summers, L. H., Alleyne, G., Arrow, K. J., Berkley, S., Binagwaho, A., ... & Yamey, G. (2013). 

Global health 2035: A world converging within a generation. The Lancet, 382(9908), 1898–1955.

Jha, P., Jamison, D. T., Watkins, D. A., & Bell, J. (2021). A global compact to counter vaccine nationalism. 

The Lancet, 397(10289), 2046–2047.

Johnson, N. P. A. S., & Mueller, J. (2002). Updating the Accounts: Global Mortality of the 1918–1920 

“Spanish” Influenza Pandemic. Bulletin of the History of Medicine, 76(1), 105–115. https://doi.

org/10.1353/bhm.2002.0022.

Jones, B. A., Grace, D., Kock, R., Alonso, S., Rushton, J., Said, M. Y., McKeever, D., Mutua, F., Young, J., 

McDermott, J., & Pfeiffer, D. U. (2013). Zoonosis emergence linked to agricultural intensification 

and environmental change. Proceedings of the National Academy of Sciences, 110(21), 8399–8404. 

https://doi.org/10.1073/pnas.1208059110.

Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., Gittleman, J. L., & Daszak, P. (2008).  

Global trends in emerging infectious diseases. Nature, 451(7181), 990–993. https://doi.org/ 

10.1038/nature06536.

Kaplan, S., & Garrick, B. J. (1981). On the quantitative definition of risk. Risk Analysis, 1(1), 11–27.

Kogan, N. E., Gantt, S., Swerdlow, D., Viboud, C., Semakula, M., Lipsitch, M., & Santillana, M. (2022). 

Leveraging Serosurveillance and Postmortem Surveillance to Quantify the Impact of COVID-19  

in Africa (p. 2022.07.03.22277196). medRxiv. https://doi.org/10.1101/2022.07.03.22277196.

Kozlowski, R. T., & Mathewson, S. B. (1995). Measuring and managing catastrophe risk.

Ledesma, J. R., Isaac, C. R., Dowell, S. F., Blazes, D. L., Essix, G. V., Budeski, K., Bell, J., & Nuzzo, J. B. (2023). 

Evaluation of the Global Health Security Index as a predictor of COVID-19 excess mortality 

standardised for under-reporting and age structure. BMJ Global Health, 8(7), e012203.

https://doi.org/10.1371/currents.outbreaks.cd818f63d40e24aef769dda7df9e0da5
https://doi.org/10.1371/currents.outbreaks.cd818f63d40e24aef769dda7df9e0da5
https://doi.org/10.1016/j.pt.2016.04.007
https://doi.org/10.1353/bhm.2002.0022
https://doi.org/10.1353/bhm.2002.0022
https://doi.org/10.1073/pnas.1208059110
https://doi.org/10.1038/nature06536
https://doi.org/10.1038/nature06536
https://doi.org/10.1101/2022.07.03.22277196


ESTIM ATED FUTURE MORTALIT Y FROM PATHOGENS OF EPIDEMIC 

AND PANDEMIC POTENTIAL

36

Lempert, R. J., & Light, P. C. (2009). Evaluating and implementing long-term decisions.  

The RAND Frederick S. Pardee Center, 11.

Low, D. E., & McGeer, A. (2010). Pandemic (H1N1) 2009: Assessing the response. CMAJ, 182(17), 

1874–1878.

Ma, J., Dushoff, J., & Earn, D. J. (2011). Age-specific mortality risk from pandemic influenza.  

Journal of Theoretical Biology, 288, 29–34.

Madhav, N., Bosa, H. K., Agyarko, R. D., Stephenson, N., Miller, K., Gallivan, M., Lam, C., Meadows, A., 

Sridharan, V., & Bah, A. (2020). Development of a risk modeling approach to enhance the 

effectiveness of epidemic preparedness, response, and financing strategies in African countries. 

International Journal of Infectious Diseases, 101, 212–213.

Madhav, N., Oppenheim, B., Gallivan, M., Mulembakani, P., Rubin, E., & Wolfe, N. (2017). Pandemics: 

Risks, Impacts, and Mitigation. In D. T. Jamison, H. Gelband, S. Horton, P. Jha, R. Laxminarayan,  

C. N. Mock, & R. Nugent (Eds.), Disease Control Priorities: Improving Health and Reducing Poverty 

(3rd ed.). The International Bank for Reconstruction and Development/The World Bank.  

http://www.ncbi.nlm.nih.gov/books/NBK525302/.

Madhav, N., Stephenson, N., & Oppenheim, B. (2021). Multipathogen event catalogs—Technical note. 24.

Marani, M., Katul, G. G., Pan, W. K., & Parolari, A. J. (2021). Intensity and frequency of extreme novel 

epidemics. Proceedings of the National Academy of Sciences, 118(35), e2105482118. https://doi.

org/10.1073/pnas.2105482118.

Meadows, A. J., Oppenheim, B., Guerrero, J., Ash, B., Badker, R., Lam, C. K., Pardee, C., Ngoon, C.,  

Savage, P. T., & Sridharan, V. (2022). Infectious Disease Underreporting Is Predicted by Country-

Level Preparedness, Politics, and Pathogen Severity. Health Security, 20(4), 331–338.

Meadows, A. J., Stephenson, N., Madhav, N. K., & Oppenheim, B. (2023). Historical trends demonstrate  

a pattern of increasingly frequent and severe epidemics of high-consequence zoonotic viruses.  

BMJ Global Health, 8(11), p.e012026.

Meslé, M. M., Vivancos, R., Hall, I. M., Christley, R. M., Leach, S., & Read, J. M. (2022). Estimating the 

potential for global dissemination of pandemic pathogens using the global airline network  

and healthcare development indices. Scientific Reports, 12(1), 3070.

Morens, D. M., Taubenberger, J. K., & Fauci, A. S. (2021). A centenary tale of two pandemics: The 1918 

influenza pandemic and COVID-19, part I. American Journal of Public Health, 111(6), 1086–1094.

Morens, D. M., Taubenberger, J. K., Folkers, G. K., & Fauci, A. S. (2010). Pandemic influenza’s 500th 

anniversary. Clinical Infectious Diseases, 51(12), 1442–1444.

Msemburi, W., Karlinsky, A., Knutson, V., Aleshin-Guendel, S., Chatterji, S., & Wakefield, J. (2023).  

The WHO estimates of excess mortality associated with the COVID-19 pandemic. Nature, 

613(7942), 130–137.

http://www.ncbi.nlm.nih.gov/books/NBK525302/
https://doi.org/10.1073/pnas.2105482118
https://doi.org/10.1073/pnas.2105482118


ESTIM ATED FUTURE MORTALIT Y FROM PATHOGENS OF EPIDEMIC 

AND PANDEMIC POTENTIAL

37

NCI. (2023). Respiratory disease [definition]. https://www.cancer.gov/publications/dictionaries/

cancer-terms/def/respiratory-disease.

Nelson, K. E., & Williams, C. M. (2014). Infectious disease epidemiology: Theory and practice.  

Jones & Bartlett Publishers.

Olival, K. J., Hosseini, P. R., Zambrana-Torrelio, C., Ross, N., Bogich, T. L., & Daszak, P. (2017). Host  

and viral traits predict zoonotic spillover from mammals. Nature, 546(7660), 646–650.  

https://doi.org/10.1038/nature22975.

Pike, H., Khan, F. & Amyotte, P. (2020). Precautionary principle (PP) versus as low as reasonably 

practicable (ALARP): Which one to use and when. Process Safety and Environmental Protection, 

137, 158–168.

Ponce, V. M. (2008). Q & A on the return period to be used for design. http://returnperiod.sdsu.edu/; 

https://ponce.sdsu.edu/return_period.html.

Porta, M. (2014). A dictionary of epidemiology. Oxford university press.

Price-Smith, A. T. (2001). The health of nations: Infectious disease, environmental change,  

and their effects on national security and development. MIT Press.

Resolve To Save Lives. (2021). Epidemics that Didn’t Happen. https://preventepidemics.org/

epidemics-that-didnt-happen-2021/.

Rosello, A., Mossoko, M., Flasche, S., Hoek, A. J. V., Mbala, P., Camacho, A., Funk, S., Kucharski, A., 

Ilunga, B. K., Edmunds, W. J., Piot, P., Baguelin, M., & Tamfum, J.-J. M. (2015). Ebola virus disease 

in the Democratic Republic of the Congo, 1976–2014. ELife, 4, e09015. https://doi.org/10.7554/

eLife.09015.

Sands, P., Mundaca-Shah, C., & Dzau, V. J. (2016). The Neglected Dimension of Global Security— 

A Framework for Countering Infectious-Disease Crises. New England Journal of Medicine,  

374(13), 1281–1287. https://doi.org/10.1056/NEJMsr1600236.

Shanmugaratnam, T., Summers, L., Okonjo-Iweala, N., Botin, A., El-Erian, M., Frenkel, J., Grynspan,  

R., Ishii, N., Kremer, M., & Mazumdar-Shaw, K. (2021). A Global Deal for our Pandemic Age.

Sirleaf, E. J., & Clark, H. (2021). Report of the Independent Panel for Pandemic Preparedness and 

Response: Making COVID-19 the last pandemic. The Lancet, 398(10295), 101–103.

Slovic, P., & Weber, E. U. (2013). Perception of risk posed by extreme events. Regulation of Toxic 

Substances and Hazardous Waste (2nd Edition)(Applegate, Gabba, Laitos, and Sachs, Editors), 

Foundation Press, Forthcoming.

Smith, K. F., Goldberg, M., Rosenthal, S., Carlson, L., Chen, J., Chen, C., & Ramachandran, S. (2014). 

Global rise in human infectious disease outbreaks. Journal of The Royal Society Interface,  

11(101), 20140950. https://doi.org/10.1098/rsif.2014.0950.

https://www.cancer.gov/publications/dictionaries/cancer-terms/def/respiratory-disease
https://www.cancer.gov/publications/dictionaries/cancer-terms/def/respiratory-disease
https://doi.org/10.1038/nature22975
http://returnperiod.sdsu.edu/
https://ponce.sdsu.edu/return_period.html
https://preventepidemics.org/epidemics-that-didnt-happen-2021/
https://preventepidemics.org/epidemics-that-didnt-happen-2021/
https://doi.org/10.7554/eLife.09015
https://doi.org/10.7554/eLife.09015
https://doi.org/10.1056/NEJMsr1600236
https://doi.org/10.1098/rsif.2014.0950


ESTIM ATED FUTURE MORTALIT Y FROM PATHOGENS OF EPIDEMIC 

AND PANDEMIC POTENTIAL

38

Sochas, L., Channon, A. A., & Nam, S. (2017). Counting indirect crisis-related deaths in the context  

of a low-resilience health system: The case of maternal and neonatal health during the  

Ebola epidemic in Sierra Leone. Health Policy and Planning, 32(suppl_3), iii32–iii39.

Stephens, P. R., Sundaram, M., Ferreira, S., Gottdenker, N., Nipa, K. F., Schatz, A. M., Schmidt, J. P., & 

Drake, J. M. (2022). Drivers of African Filovirus (Ebola and Marburg) Outbreaks. Vector-Borne  

and Zoonotic Diseases, 22(9), 478–490.

Strouth, A., McDougall, S., Jakob, M., Holm, K. & Moase, E. (2019). Quantitative risk management 

process for debris flows and debris floods: Lessons learned in Western Canada. Association  

of Environmental and Engineering Geologists; special publication 28.

Taubenberger, J. K., & Morens, D. M. (2006). 1918 Influenza: The Mother of All Pandemics. Emerging 

Infectious Diseases, 12(1), 15–22. https://doi.org/10.3201/eid1201.050979.

Troeger, C., Blacker, B., Khalil, I. A., Rao, P. C., Cao, J., Zimsen, S. R., Albertson, S. B., Deshpande, A., 

Farag, T., & Abebe, Z. (2018). Estimates of the global, regional, and national morbidity, mortality, 

and aetiologies of lower respiratory infections in 195 countries, 1990–2016: A systematic analysis 

for the Global Burden of Disease Study 2016. The Lancet Infectious Diseases, 18(11), 1191–1210.

United Nations Population Division. (2022). World Population Prospects 2022: Data Sources.  

(UN DESA/POP/2022/DC/NO. 9). https://population.un.org/wpp/.

US Department of Health and Human Services. (2005). HHS pandemic influenza plan. Washington 

(DC): The Department.

van Wijhe, M., Ingholt, M. M., Andreasen, V., & Simonsen, L. (2018). Loose ends in the epidemiology  

of the 1918 pandemic: Explaining the extreme mortality risk in young adults. American Journal  

of Epidemiology, 187(12), 2503–2510.

Vinck, P., Pham, P. N., Bindu, K. K., Bedford, J., & Nilles, E. J. (2019). Institutional trust and 

misinformation in the response to the 2018–19 Ebola outbreak in North Kivu, DR Congo:  

A population-based survey. The Lancet Infectious Diseases, 19(5), 529–536.

Wacharapluesadee, S., Iamsirithawon, S., Chaifoo, W., Ponpinit, T., Ruchisrisarod, C., Sonpee, C., 

Katasrila, P., Yomrat, S., Ghai, S., & Sirivichayakul, S. (2020). Identification of a novel pathogen 

using family-wide PCR: Initial confirmation of COVID-19 in Thailand. Frontiers in Public  

Health, 8, 598.

Wegrzyn, R. D., Appiah, G. D., Morfino, R., Milford, S. R., Walker, A. T., Ernst, E. T., Darrow, W. W.,  

Li, S. L., Robison, K., & MacCannell, D. (2022). Early detection of SARS-CoV-2 variants using 

traveler-based genomic surveillance at four US airports, September 2021-January 2022. 

MedRxiv, 2022.03. 21.22272490.

WHO. (2020). COVID-19 Emergency Committee highlights need for response efforts over long  

term. Geneva: WHO, 1, 2020.

https://doi.org/10.3201/eid1201.050979
https://population.un.org/wpp/


ESTIM ATED FUTURE MORTALIT Y FROM PATHOGENS OF EPIDEMIC 

AND PANDEMIC POTENTIAL

39

WHO. (2022a). Global excess deaths associated with COVID-19 (modelled estimates). https://www.who.

int/data/sets/global-excess-deaths-associated-with-covid-19-modelled-estimates.

WHO. (2022b). WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int.

Wilkinson, C. (2021). Pandemic data drives risk modeling. Business Insurance. https://www. 

businessinsurance.com/article/20210202/NEWS06/912339318/Pandemic-data-drives- 

risk-modeling-COVID-19-coronavirus-.

Wise, P. H., & Barry, M. (2017). Civil war & the global threat of pandemics. Daedalus, 146(4), 71–84.

https://www.who.int/data/sets/global-excess-deaths-associated-with-covid-19-modelled-estimates
https://www.who.int/data/sets/global-excess-deaths-associated-with-covid-19-modelled-estimates
https://covid19.who.int
https://www.businessinsurance.com/article/20210202/NEWS06/912339318/Pandemic-data-drives-risk-modeling-COVID-19-coronavirus-
https://www.businessinsurance.com/article/20210202/NEWS06/912339318/Pandemic-data-drives-risk-modeling-COVID-19-coronavirus-
https://www.businessinsurance.com/article/20210202/NEWS06/912339318/Pandemic-data-drives-risk-modeling-COVID-19-coronavirus-


ESTIM ATED FUTURE MORTALIT Y FROM PATHOGENS OF EPIDEMIC 

AND PANDEMIC POTENTIAL

40

Annex A. Technical supplement
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Estimated Future Mortality from Pathogens of Epidemic & Pandemic Potential (2023). In: CGD Working 

Paper 665. Washington, DC: Center for Global Development.

Introduction
We developed an epidemic risk modeling framework to produce the estimates in this chapter. Our 

model draws upon principles from computational epidemiology, social science, economics, actuarial 

science, risk management, and extreme events modeling. It includes a disease spread model, 

development of exceedance probability curves, and estimation of the expected mortality. In this 

Technical Supplement, we provide detailed methods for each of these components.

Our disease spread model is a disease-specific, stochastic, global, metapopulation, compartmental 

model that simulates the daily spatio-temporal progression of disease spread. It includes 

mechanistic modeling of under-reporting to correct for uncertainty in reported infectious disease 

statistics and incorporates an Epidemic Preparedness Index (EPI) to model likely intervention 

scenarios and how they may differ for 200+ countries and territories (Oppenheim et al., 2019). 

Response measures are also included.

For each simulation within the event catalog, we derived plausible model input parameters and initial 

conditions from analyses of historical data and scientific literature. The simulations incorporate 

epidemiologic knowledge of pathogens and population characteristics that can impact transmission 

dynamics and the likelihood of severe outcomes. 

In constructing the model, we included pandemic influenza and epidemic/novel coronaviruses 

to represent a catalog of epidemics and pandemics caused by respiratory pathogens having high 

pandemic potential. These included events caused by novel, human-to-human transmissible 

influenza A viruses and novel viruses in the subfamily Orthocoronavirinae that are zoonotic in 

origin and cause disease in humans, such as SARS-CoV-1, MERS-CoV, and SARS-CoV-2. Seasonal 

and endemic diseases, such as seasonal influenza and seasonal coronaviruses (which typically 

cause mild disease in humans), were considered to be part of the “baseline risk”, which is adequately 

represented in historical mortality data, and were not included. 

The output of our risk model is a modeled event catalog (Main Text, Table 1), which is a database 

containing many hypothetical views of the potential loss that may be experienced in a given year 

(Madhav et al., 2017, 2021). The event catalog serves as a basis for probabilistic estimation of potential 

human and economic losses caused by epidemics, and we used it to analyze the frequency and 

severity of infectious disease epidemics caused by respiratory pathogens of concern.



ESTIM ATED FUTURE MORTALIT Y FROM PATHOGENS OF EPIDEMIC 

AND PANDEMIC POTENTIAL

41

We generated the event catalogs using simulations produced by the disease spread model described 

above. Simulations are initiated with parameter values sampled from probability distributions. 

Parameters are instead held constant if they are relatively invariant across observed epidemics, are 

not influential to the model outcomes, or do not have sufficient historic data to develop a probability 

distribution. With our sampling approach the most probable parameter values are represented more 

often in the event catalog, and the extreme values for that parameter will rarely occur. The outcome 

of this process is an event catalog that captures the probabilities of the occurrence of different-

magnitude events in any given year.

The frequency of events is a key driver of overall epidemic risk. The modeled event frequency is 

characterized either by the time between events in the historical record (i.e., inter-arrival time), or, 

for more frequently-occurring events, the number of epidemics per year. For pathogens that are 

rare, many simulated years in the event catalog do not contain any epidemic, while catalogs for more 

frequent events may contain more than one event per year.

Disease spread model
A key component of our risk modeling framework is a computational epidemiology-based disease 

spread model. The disease spread model begins with zoonotic disease spillover from an animal 

host and simulates human-to-human disease transmission between and within thousands of 

modeled geographic subpopulations across the world. The model framework consists of a stochastic, 

metapopulation compartment model coupled with human mobility networks overlaid across a 

human population layer, with underpinnings comparable to previously-published models (Balcan 

et al., 2009; Colizza et al., 2007), and including enhancements as described below.

Population layer

Our disease spread models operate over a global human population layer constructed from available 

census data and United Nations estimates (United Nations, 2015). Individuals are partitioned into 

subpopulations that correspond to administrative subdivisions. During simulations, individuals are 

assumed to interact homogeneously within each subpopulation. Disease is transmitted between and 

within each subpopulation on a daily time step.

Mobility model

Outbreaks spread locally within subpopulations as people interact with their communities, and 

across the globe through long-distance travel. In our disease spread model, pathogens spread 

between subpopulations through mobility networks. Long-range mobility (i.e., air travel) occurs  

on a daily time scale. Short-range mobility (i.e., daily commuting) occurs over a time period 

shorter than one day.
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Global epidemic spread is facilitated by rapid human movement via airplanes. Air travel is 

incorporated into the disease spread model by probabilistically moving individuals between 

geographic subpopulations according to domestic and international air traffic data. Air traffic data, 

consisting of the number of individuals who travel between each airport, were used to calculate the 

daily probability of air travel between connected subpopulations (OAG, 2016). Each individual in an 

epidemiological model compartment that has the ability to travel (based on disease status) has the 

potential to move to a connected subpopulation every simulation day. This results in minor changes 

to the number of individuals in each subpopulation over time. 

Our model also includes short-range mobility, which estimates the daily probability that an 

individual travels between two adjacent subpopulations. The short-range mobility model assumes 

that individuals that commute for work, in general, spend one-third of the day in their destination 

location and spend the remainder of the time in their origin location. This is a general assumption 

that reflects the average amount of time persons spend at work during a day. The proportion of 

the population that commutes each day is estimated at the country level based on the labor force, 

unemployment, and road networks.

Epidemic preparedness index

Epidemic preparedness and response capacity are important factors that influence outbreak 

severity. The Epidemic Preparedness Index (EPI) is a comprehensive metric used in the disease 

spread models to capture the geographic variation in outbreak preparedness and response capacity. 

The EPI reflects the geographic subpopulation’s ability to detect and respond to an epidemic event, 

where scores range from 0 (least prepared) to 100 (most prepared) (Oppenheim et al., 2019).

Reporting bias

Real-world observational outbreak data are always affected by reporting biases because not all 

information is known or reported to health authorities, especially in real-time (Dalziel et al., 2018; 

Gamado et al., 2017). Reporting biases are notably present especially before the causative agent of the 

outbreak is known.

Our disease spread model output must be interpreted in light of reporting biases for comparison 

with real-world outbreak data. To address this issue, we built a model that estimates a pathogen-

specific reporting rate at the national level. The estimated reporting rate from this model is used in 

the compartment model to more closely reflect the real number of cases. To develop this model, we 

collected pathogen- and country-specific reporting rates from the scientific literature along with 

potential predictor variables that can be used to inform the model (Meadows et al., 2022).
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Epidemiological compartment model

To simulate disease spread, our epidemiologic model compartmentalizes human subpopulations 

by disease state. An individual can only exist in one disease state at any given time. The model 

probabilistically captures the progression of individuals through each disease state using a series 

of transition rates. Stochastic transitions between model compartments capture the inherent 

variation in disease transmission and progression. Compartment transitions are defined by 

discrete stochastic chain binomial and multinomial processes. The model calculates the number of 

individuals in each disease state by geographic subpopulation for each simulation day. 

The epidemic model utilizes a specialized SEIHR (Susceptible–Exposed–Infectious–Hospitalized–

Removed) compartmental structure shown in Figure A1. The ability to travel or commute and infect 

other individuals is defined for each compartment (Table A1). Infectious individuals can spread 

disease within their subpopulation and to other geographic subpopulations if the individuals travel. 

Mass vaccination campaigns are also explicitly incorporated into the compartment model structure.

FIGURE A1. Epidemiological compartment model

At the start of the event, all individuals are in the Susceptible compartment and a single individual 

is added to the Exposed compartment. The simulation continues until no individuals are in the 

Exposed, Infected, Hospitalized or Not-Hospitalized compartments. Long- and short-distance 

travel is explicitly modeled for Exposed and Infected compartments. Individuals in the Hospitalized, 
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Not-Hospitalized, and Deceased compartments are assumed to not travel. Air travel of Susceptible 

and Immune compartments is not modeled as they do not contribute to the movement of infection 

(Table A1).

TABLE A1. Description of modeled disease states,  
their infectivity, and ability to commute

State Description Mobility† Infectious
Susceptible Individuals susceptible to infection Yes^ No
Exposed 1 and 2 Individuals exposed to disease, not yet infectious Yes No
Infected Infected and showing symptoms Yes Yes
Not-Hospitalized Infected individuals who are not treated in a 

traditional hospital setting
No Yes

Hospitalized Infected individuals who are hospitalized No Yes
Recovered Individuals who have recovered from infection 

and are now immune
Yes^ No

Deceased Individuals that have died of their infection and 
are not infectious

No No

Vaccinated– 
Immune

Individuals who are vaccinated and become 
immune to future infection

No^ No

Vaccinated– 
Susceptible

Individuals who are vaccinated but do not 
achieve immunity and remain susceptible to 
future infection

No^ No

Notes: †Mobility	indicates	whether	or	not	individuals	in	the	state	are	incorporated	into	the	long-	and	short-range	mobility	
networks;	^Susceptible	and	Recovered	individuals	are	only	incorporated	into	short-range	(not	long-range)	mobility	
networks	due	to	computational	constraints.

The modeled transition rate from the Susceptible to the Exposed state is determined by the Force of 

Infection. Exposed individuals progress through two sequential Exposed compartments so that the 

duration of the incubation period is Erlang-distributed. At this stage individuals are then assigned 

to Reported or Unreported status based on the reporting ratio. Then they progress into the Infected 

compartments at a daily rate, epsilon, the inverse of the average incubation period.

Individuals in the Infected compartments may then transition into the Hospitalized or 

Not-Hospitalized states at a daily rate, gamma. This rate is associated with the average time 

between symptom onset and healthcare utilization; however, the model also includes a 

Not-Hospitalized compartment that captures individuals not cared for in a traditional hospital 

setting. Individuals in these two compartments cannot travel. Individuals in the Hospitalized and 

Not-Hospitalized compartments then move into the Recovered, or Deceased state at a daily rate, 

mu, based on the average time to recovery or death and case fatality ratio. Transition rates are  

shown in Table A2.
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TABLE A2. Description of model transition rates

Transition Transition Rates
Susceptible → Exposed 1 FOI
Exposed 1 → Exposed 2–Reported epsilon/2 * RR
Exposed 1 → Exposed 2–Unreported epsilon/2 * (1–RR)
Exposed 2 → Infected (epsilon/2) 
Infected → Hospitalized gamma * CHR
Infected → Not-Hospitalized gamma * (1–CHR)
Hospitalized/Not-Hospitalized → Recovered/Immune mu * (1–CFR)
Hospitalized/Not-Hospitalized → Deceased mu * CFR
Susceptible → Vaccinated–Immune^ VxRate * VxEff
Susceptible → Vaccinated–Susceptible^ VxRate * (1–VxEff)

Notes:	CHR	=	Case	hospitalization	ratio;	CFR	=	Case	fatality	ratio;	FOI	=	Force	of	infections;	RR	=	reporting	ratio;	VxRate	
=	Vaccination	Rate;	VxEff	=	Vaccination	Efficacy;	^Transitions	from	the	Susceptible	compartment	to	the	Vaccinated-
Immune	and	Vaccinated-Susceptible	compartments	only	occur	after	the	Vaccination	Start	Day	and	continue	until	the	
maximum	proportion	of	the	population	to	be	vaccinated	is	achieved.

The force of infection (FOI; Eqn. A1) dictates the rate of transition from Susceptible to Exposed 

and is based on the reproduction number (Rt), the infectious period (gamma-1), the total number of 

infectious individuals in the subpopulation, and the total number of individuals in the subpopulation 

(Ni). FOI is calculated for each subpopulation, i, on each day, t, using the equation:
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Model parameterization
Model parameter distributions are estimated through review and analysis of the scientific 

literature and historical data, including from prior events and modeling studies (Table A3). The fitted 

distributions may be parametric or non-parametric, discrete or continuous, as warranted by the data 

and biological plausibility. The process of distribution fitting and assessment is shown in Figure A2.

Model parameters have varying levels of available data from historical events and the scientific 

literature that would allow for fitting of statistical distributions. There may be several reasons why 

parameters are less well-represented in the historical record and scientific literature, including a 

lack of historical events, lack of published data, or a lack of interest from the scientific community in 

estimating a particular parameter.
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FIGURE A2. Process for fitting model parameter distributions

TABLE A3. Model parameter types and ranges of values (and references)

Parameter Pandemic Influenza MERS-Like  
Coronaviruses 

SARS-Like  
Coronaviruses

R0 (basic 
reproduction 
number)

Non-parametric
(min = 1.0, max = 3.0)
(Balcan et al., 2009; Jackson 
et al., 2010; Longini et al., 
2005; Rizzo et al., 2011; Tuite 
et al., 2010; White et al., 2009; 
White & Pagano, 2008; Yang 
et al., 2009; Zhang Shenghai 
et al., 2009)

Triangular
(min = 0.5, max = 0.9) 
(Breban et al., 2013; 
Cauchemez et al., 
2014)

Triangular
(min = 0.5, max = 2.8) 
(Adam et al., 2020; 
Chowell et al., 2015; 
Lipsitch et al., 2003)

K (superspreading 
dispersion 
parameter)

None Uniform
(min = 0.05,  
max = 0.10)
(Choe et al., 2020)

Uniform
(min = 0.35,  
max = 0.45)
(Adam et al., 2020; 
Lau et al., 2020)

Incubation period 
(days)

Non-parametric
(min = 1, max = 4)
(Lessler et al., 2009; World 
Health Organization, 2009)

Truncated Lognormal 
(min = 1, max = 14) 
(Cauchemez et al., 
2014)

Gamma
(min = 1, max = 6) 
(Alene et al., 2021; 
McAloon et al., 2020)

Infectious period Lognormal
(min = 2, max = 5)
(Carrat et al., 2008; Longini 
et al., 2005; Rvachev & 
Longini, 1985; Tizzoni et al., 
2012; Tuite et al., 2010)

Fixed value 
(value = 5.2) 
(Cauchemez et al., 
2014)

Fixed value 
(value = 5.2) 
(Cauchemez et al., 
2014)
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Transmissibility, whose initial value in the model is represented by R0, is influenced by pathogen 

characteristics, host characteristics, and population/environmental characteristics, including 

population density, social interaction, and sanitation practices. The R0 parameter is well-

characterized in the scientific literature for several pathogens, due to the strong scientific and 

public health interest in understanding the transmissibility of pathogens. Infectious period is also 

well-represented in the scientific literature, albeit not as represented as R0. This is because most 

methodologies for estimating infectious periods require clinical observations or viral shedding 

studies, while R0 can be estimated solely from case counts over time, which are more likely to be 

publicly reported.

Intervention and response measures
Epidemic preparedness and response are critical determinants of event trajectory. The complexities 

of outbreak preparedness and response are captured in the disease spread model through a 

series of intervention parameters that capture activities that result in the reduction in the disease 

transmission rate, such as infection control improvements and social distancing. Model parameters 

pertaining to interventions are highlighted in Table A4, with distributions and ranges shown in 

Table A5. 

Epidemic response strategies typically include pharmaceutical and non-pharmaceutical 

interventions. Pharmaceutical interventions can reduce transmission by preventing infection or 

reducing pathogen shedding; alternatively, pharmaceutical interventions may reduce the case 

fatality ratio by improving patients’ clinical course. Examples of pharmaceutical interventions 

include vaccines and therapeutics. Non-pharmaceutical interventions encompass efforts to reduce 

transmission, such as improved sanitation, social distancing, and reduced population mobility. 

Examples include masking, contact tracing, quarantine, isolation, or “lockdowns”, as occurred during 

COVID-19, and can also include mitigation of risks associated with cultural factors that play a role 

in transmission. Non-pharmaceutical interventions also include basic patient supportive care. The 

effectiveness of interventions depends heavily on social and political factors, such as the willingness 

of the public to comply with health regulations and adopt risk-reducing behavior. Therefore, effective 

risk communication and building population trust are critical aspects of epidemic response. 

Epidemic control measures can include quarantine, isolation, strict infection control procedures 

in healthcare settings, antiviral therapies, and vaccination. Factors that determine the impacts of 

these control measures include time to deployment, available resources, and the ability to effectively 

communicate with the affected communities (Liu et al., 2015).

Due to the infrequency of large scale epidemics, there is a lack of information about how countries 

will respond. Additionally, these responses have changed significantly in the last few decades, 
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making information from historic events less reliable. For example, during the forty years spanning 

1980–2020 there was only one influenza pandemic that tested the public health system’s ability 

to detect a novel influenza virus and create and distribute a new vaccine. For this reason, such 

parameters have greater uncertainty and rely to a greater extent on the elicitation of expert opinion 

and scientific judgment.

TABLE A4. Model parameters associated with interventions and vaccination

Parameter Description
Vaccination Rate Proportion of the susceptible population that is vaccinated per day
Vaccine Efficacy If a vaccine is available, the proportion of vaccinated individuals 

who become immune to infection 
Vaccine Proportion If a vaccine is available, the maximum proportion of the 

population that is vaccinated
Vaccine Deployment Time If a vaccine is available, the time between the start of the event 

and vaccine deployment.
Intervention Time The time between the start of the event and attempt at outbreak 

containment.
Intervention Rt The effective reproduction number after intervention

Vaccination campaigns

For respiratory pathogen outbreaks, mass vaccine campaigns are explicitly modeled using model 

parameters as described in Tables A4–A5. The probability of vaccination (when a vaccine is available) 

is dependent upon these parameters. 

The Vaccine Efficacy parameter indicates the proportion of vaccinated individuals who experience 

complete protection from the modeled virus infection (Nichol & Treanor, 2006). Vaccine Efficacy is 

set to zero if vaccination resources are not available during the modeled scenario, although other 

nonpharmaceutical interventions, which reduce transmission, still occur. This represents the 

possibility of resource limitations preventing vaccination campaigns.

The number of vaccines available during an outbreak is represented by the Vaccine Proportion 

variable. The parameter is intended to reflect the potential challenges in production and provision of 

vaccinations as well as vaccine uptake by the population. Vaccine Proportion is applied in the model 

by tracking the number of doses administered. Once the Vaccine Proportion is reached, Vaccination 

Rate is set to 0. 

The Vaccine Deployment Time varies by simulation. Prior to the Vaccine Deployment Time, the 

Vaccination Rate for all subpopulations is zero. Once Vaccine Deployment Time occurs, members of 

each subpopulation receive vaccine on a daily basis, according to Vaccination Rate parameter, which 

varies by EPI.
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General intervention measures

In addition to vaccination campaigns, the model includes an overall reduction in transmissibility 

due to non-pharmaceutical intervention (NPI) response measures, which represents an attempt at 

containment. In the model, transmissibility after implementation of the intervention measures is 

described by the parameter, Rt (the effective reproduction number at time t) (Bo et al., 2021). 

The Intervention Time parameter describes when transmission reduction starts to occur as a result 

of intervention measures. Due to the limited historical data on time to intervention, we used the 

time difference between the onset of the first case to the time of first report as a proxy measure for 

intervention time. Reporting timeliness has been used as a proxy measure in previous research to 

assess surveillance and response systems (Chan et al., 2010).

The preparedness and response capacity of a region, based on EPI, is assumed to impact the 

Intervention Time parameter. Intervention Time is represented by a negative binomial distribution 

for each subpopulation according to their EPI equal interval quantile category. The negative 

binomial distribution was derived by fitting the distribution to the number of days between the 

onset of the first case (as reported in any data source) and the date of first report by the World Health 

Organization Disease Outbreak News reports (Oppenheim et al., 2019). This analysis contains data 

from January 1996 through August 2018, and excludes events caused by toxin, chemical, foodborne, 

vector-borne, or unknown pathogens. The empirical distribution of time to report by EPI quantile is 

displayed in Figure A3.

FIGURE A3. Time to report by Epidemic Preparedness  
Index (EPI) equal interval quantile

The value of Rt after interventions is based on the estimated efficacy of non-pharmaceutical response 

measures. Once a simulated event reaches the Intervention Time, the modeled transmissibility 

parameter is decreased linearly over the following two-week time period until Rt equals the new 

value. The Rt values are assumed based on observations from previous epidemics and modeling 

studies (Bo et al., 2021; Wu et al., 2006).
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Outcomes modeling
Hospitalizations are modeled based on the Case Hospitalization Ratio (CHR) distribution, estimated 

by analysis from scientific literature and available data. The CHR estimates the proportion of 

infections that become ill enough to require and obtain hospital care. 

Mortality is modeled based on the Case Fatality Ratio (CFR) distribution, which is also estimated 

based on analysis of scientific literature and available data. The CFR represents the proportion of 

infections that succumb to the illness.

There is strong evidence of correlation between the CHR and CFR, which is incorporated in the model 

(Figure A4). The assumed distributions of CHR and CFR are shown in Table A5.

FIGURE A4. Modeled relationship between case fatality ratio (CFR)  
and case hospitalization ratio (CHR)
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TABLE A5. Intervention and outcome parameter distributions  
and ranges (and references)

Parameter Pandemic Influenza MERS-Like  
Coronaviruses 

SARS-Like  
Coronaviruses

CHR Non-parametric 
(min= 0.0004, max = 0.4)
(Andreasen et al., 2008; 
Chowell et al., 2011; Gani et 
al., 2005; Presanis et al., 2009; 
Shrestha et al., 2011; Shubin 
et al., 2014; Wu et al., 2010)

Triangular
(min = 0.95, max = 1)
(Rivers et al., 2016)

Function of CFR
(Angulo et al., 2021)

CFR Non-parametric 
(min = 0.00017, 
max = 0.29)
Varies by EPI quintile
(Britten, 1932; Lee et al., 2008; 
Valleron et al., 2010; Wong 
et al., 2013)

Triangular
(min = 0.3, max = 0.4)
(Majumder et al., 2014; 
Rambaut, Andrew, n.d.; 
Rivers et al., 2016)

Beta
(min = 0, max = 0.24)
(Grewelle & Leo, 2020; 
Jia et al., 2009; Kenyon, 
2020; Liang et al., 2007; 
Luo et al., 2021; World 
Health Organization, 
2015)

Vaccination 
Rate 
(Proportion of 
population per 
day)

Uniform
(min = 0.045%, 
max = 1.1%)
(Henderson et al., 2009; 
Mihigo et al., 2012; Tizzoni 
et al., 2012; World Health 
Organization, 2013)

None
(Tai et al., 2022)

Gamma 
(min = 0%, max = 4.2%)
Varies by EPI quintile
(Richie et al., 2021)

Vaccine 
Efficacy

Discrete
(min = 0.60, max = 0.80)
(Longini et al., 2004)

None
(Tai et al., 2022)

Uniform
(min = 0.5, max = 0.8)
(Cochrane Emergency 
and Critical Care Group 
et al., 2023)

Vaccine 
Proportion

Based on CHR, varies by 
country
(Mihigo et al., 2012; Tizzoni 
et al., 2012; World Health 
Organization, 2013)

None
(Tai et al., 2022)

Uniform
(min = 0.5, max = 0.8)
(Richie et al., 2021)

Vaccine 
Deployment 
Time (Start 
Day)

Discrete
(min = 180, max = ∞) 
Varies by EPI quintile
(Hessel & European 
Vaccine Manufacturers 
(EVM) Influenza Working 
Group, 2009; World Health 
Organization, 2013)

None
(Tai et al., 2022)

Uniform
(min = 120, max = 600)
Varies by EPI quintile
(Richie et al., 2021)

Intervention 
Time (weeks)

Discrete
(min = 4, max = 12)
(Martinez & Das, 2014; 
Oppenheim et al., 2019)

Fixed value 
(value = 52)
Based on (Breban  
et al., 2013)

Uniform
(min = 10, max = 32)
(Ali et al., 2020)

Intervention Rt R0 reduction
(min = 3%, max = 10%)
Varies by EPI quintile
(Martinez & Das, 2014; 
Oppenheim et al., 2019)

Fixed value 
(value = 0.5)
Based on (Breban  
et al., 2013)

Decay over time 
(Ali et al., 2020; Chowell 
et al., 2004)
Analysis of
(Ginkgo Bioworks, 2023)
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Spark location
The location at which a zoonotic infectious disease emerges into human populations can impact 

the extent and severity of an epidemic. Respiratory epidemics can start anywhere in the world, 

but several factors can increase the risk of an area becoming a spark site. The likely location of 

epidemic emergence (“spark location”) is modeled through geospatial analysis of environmental 

variables, animal host locations, socioeconomic factors, and observed outbreak data. These data are 

formulated into emergence risk maps to identify high risk areas. This method often reveals areas of 

risk where cases have never been historically reported. The analyses performed are comparable to 

published works related to emergence mapping (Messina et al., 2016), such as for avian influenza and 

coronavirus spillover risk (Anthony et al., 2017; Dhingra et al., 2016; Sikkema et al., 2019).

Spark probabilities by country were estimated separately for pandemic influenza, MERS-like 

coronaviruses, and SARS-like coronaviruses (Tables A6–A8); estimates were aggregated up to regional 

groupings of countries. For all three categories, Asia and Africa had the greatest spark risk. For MERS-

like coronaviruses, over 90% of the risk was concentrated in Asia, largely driven by high probabilities in 

the Middle East.

TABLE A6. Proportion of spark risk by region for pandemic influenza viruses

Region Probability
Asia 33.53%
Africa 18.36%
North America 17.20%
South America 13.09%
Europe 11.60%
Oceania 6.22%

TABLE A7. Proportion of spark risk by region for MERS-like coronaviruses

Region Probability
Asia 92.92%
Africa 5.42%
Oceania 0.96%
South America 0.32%
North America 0.21%
Europe 0.17%

TABLE A8. Proportion of spark risk by region for SARS-like coronaviruses

Region Probability
Asia 31.66%
Africa 26.36%
North America 14.71%
Europe 13.78%
South America 10.27%
Oceania 3.21%
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Event frequency
Distributions of event frequency were developed from an analysis of historical data. Some types of 

events, such as MERS-like coronaviruses, typically have multiple occurrences per year, while less 

frequent events, such as pandemic influenza and SARS-like coronaviruses, would have, on average, 

less than one event per year (Table A9).

TABLE A9. Parameterization of event frequency  
by pathogen category (and references)

Pathogen Category Frequency Distribution
Pandemic Influenza  
(inter-arrival time, years)

Weibull  
(min = 5, max = 135)  
(Morens et al., 2010)

MERS-like Coronaviruses  
(events per year)

Truncated Negative Binomial  
(min = 15, max = 26)  
(Eifan et al., 2017)

SARS-like Coronaviruses  
(events per year)

Poisson  
(min = 0, max = 4)  
Analysis of (Ginkgo Bioworks, 2022)

Event catalog construction
For the results presented in this chapter, we simulated 100,000 years, representing 100,000 versions 

of “next year”. The catalog size is determined by the number of simulations needed to achieve 

convergence in the tail risk estimates. Once the full set of stochastic simulations completes, it 

typically includes hundreds of thousands to millions of event scenarios, which are then compiled into 

an event catalog (Madhav et al., 2021). 

For each modeled event catalog, we create two versions. The first version is the Total Direct Catalog, 

which includes a full view of all spillover events and total case and death counts, not just those that 

are detected and reported. This catalog view allows for a more complete accounting of the true 

picture of loss. The second version is the Reported Catalog, which is adjusted for both the probability 

of detecting an event and the ratio at which cases and deaths are reported. This catalog version better 

reflects the realities of epidemic reporting and is more readily comparable to historical reported 

data. In keeping with the framework presented in the main text section on “Direct Deaths vs. Excess 

Mortality”, the estimates in the Reported Catalog represent Category D alone, while the Total Direct 

Catalog represents the sum of Categories C and D.
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Exceedance probability functions
Once we create an event catalog, we use it to develop a discretized exceedance probability function 

(EPF). This function results in estimates for the probability that an event of severity, s, or greater will 

occur in a given year. The EPF encapsulates two key factors, the frequency and severity of epidemics, 

into one function. For this study, we used deaths as the severity metric, though other measures of 

severity could be used (e.g., cases, economic losses, etc.). Specifically, we used the annualized EPF. 

Annualization is achieved as such: if there are multiple epidemics in a simulated year, losses are 

aggregated by the year in which they start.

Operationally, the EPF is generated by sorting observation years in descending order and dividing 

the rank number by the total number of years in the event catalog. The simulated, discrete EPF is 

defined mathematically in the following way. Let S be a set of N independent severity observations 

having the members {S1, S2, S3, …, SN}, where each Sj is the aggregation of losses beginning in each time 

period j. When the members of S are arranged in descending order, that is, the maximum Sj is first 

and the minimum Sj is last (in this example (S3 >= S1 >= SN >= … >= S2), and Rj is the rank number of the 

Sj observation (in this example, R3 = 1, R1 = 2, RN = 3, …, R2 = N), then the exceedance probability function 

of Sj is estimated as shown in Equation A2.
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An example EPF plot is provided in Figure A5.

FIGURE A5. Example exceedance probability function

The inverse of EPF(s), r, is the return time (also known as return period or recurrence interval), shown 

in Equation A3. 
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Some simulation years may have an equal number of deaths. To account for this, Equation A4 gives 

the formulation of the discrete probability density function (pdf) associated with the EPF, where N is 

the number of simulation years and n(s) is the number of simulation years resulting in severity s.
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(A4)

By probability theory, in the general case, the cumulative distribution function, cdf s( )� is defined by 

Equation A5

 −∞

= ∫( )    ( ) 
s

cdf s pdf x dx

 

(A5)

The EPF is simply the complementary cumulative distribution function, as shown in Equation A6.

 EPF s cdf s( )� � ( )� �1  (A6)

Expected value calculation
A summary statistic of the EPF is the expected value (EV) of severity in a year, where we use the term 

expected value as it is used in probability theory. In extreme events modeling and insurance, this 

is known as the average annual loss (AAL). The AAL for an infectious disease event catalog is the 

mean number of cases, hospitalizations, deaths, or associated monetary loss across all simulation 

years in the event catalog. The value is highly skewed due to the inclusion of extreme events in the 

catalog. Additionally, for rare events, there are many years within the EPFs with low levels of deaths, 

punctuated by some years with very high numbers of deaths. The expected severity value of the 

discrete EPFs, is given by Equation A7.

 
= ⋅∑( )    ( )

s

EV EPF s pdf s
 

(A7)

In the continuous treatment, the expected value of the number of deaths for a given EPF is the area 

under the EPF curve, given by Equation A8.
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Model validation & sensitivity testing

Scenario inspection 

We inspected a subset of scenarios to assess for biological and epidemiological plausibility. Below 

we provide examples of two different hypothetical scenarios simulated by our disease spread 

model (Table A10). These events illustrate what potential scenarios might look like and are just two 

of thousands of example scenarios within the catalogs. The event magnitudes of 12 million and 

80 million total global deaths (Table A11) were selected based on falling in different portions of the 

respiratory pathogen EPF. Events of this magnitude can take many forms, given the myriad of model 

parameters and the stochastic nature of the simulations. Notably, in both of these scenarios, the 

epidemic simmers at low levels of transmission before taking off and becoming a global pandemic 

(Figure A6).

TABLE A10. Scenario input parameters

Parameter Scenario 1 Scenario 2
Spark Country Canada Turkey
Incubation period (days) 3 5
R0 1.679 1.716
Case-Fatality Ratio 1.74% 4.54%
Case-Hospitalization Ratio 6.64% 13.55%
Detection threshold 5 deaths 25 deaths
Timing of non-pharmaceutical 
interventions (NPIs)

30 days after detection in the 
spark country and 60 days 
after detection elsewhere

30 days after detection in the 
spark country and 60 days 
after detection elsewhere

Rt after interventions 0.9934 1.0502
Vaccination Rate (Proportion 
of population per day)

0.22%  
Varies by EPI

0.22%  
Varies by EPI

Vaccine Efficacy 0.8 0.8
Vaccine Proportion 0.7  

Varies by EPI
0.7  
Varies by EPI

Vaccine Development Time 326 days after detection  
Varies by EPI

326 days after detection  
Varies by EPI

TABLE A11. Estimated scenario outcomes

Outcome Scenario 1 Scenario 2
Infection Counts (thousands) 686,000 1,800,000
Hospitalization Counts (thousands) 47,000 249,000
Death Counts (thousands) 12,300 83,300
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FIGURE A6. Simulated epidemic curves for scenario 1: 12 million  
global deaths and scenario 2: 80 million global deaths

Sensitivity testing

We performed sensitivity analyses on our model to determine the response of the model to 

variations in parameter values. We analyzed the total number of infections as the output of interest. 

The analysis first required the simulation of a set of baseline scenarios. Then, additional simulations 

were produced by varying a single parameter around the baseline value while keeping all other 

parameters constant. This process was repeated for each model parameter. The list of parameters 

tested can be found in Table A12. 

A sensitivity index based on partial rank correlation coefficients was calculated for each parameter 

and displayed in a tornado plot (Table A12, Figure A7). Sensitivity indices for vaccine-related, and 

non-vaccine parameters were run separately as a non-vaccine baseline scenario was used to test 

non-vaccine related parameters.

Based on the sensitivity analysis, we found that intervention timing, vaccine timing, and R0 

are strongly influential parameters in the overall simulated outbreak size. Incubation period is 

moderately influential, and the remaining parameters are only mildly influential. These findings are 

consistent with what is expected based on manual inspection of model output, basic epidemiological 

principles, and what is found in the literature for similar models.
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TABLE A12. Sensitivity testing results demonstrated  
by partial rank correlation coefficients

Parameter Original Bias Std. Error Min. c.i. Max. c.i.
R0 0.4053 0.0020 0.0342 0.3376 0.4729
Intervention Time 0.0018 –0.0002 0.0397 –0.0806 0.0785
Incubation Period –0.0866 0.0002 0.0397 –0.1637 –0.0107
Intervention Rt 0.1794 0.0005 0.0391 0.1048 0.2525
Vaccine Efficacy 0.0572 –0.0012 0.0393 –0.0139 0.1393
Vaccine Start Day –0.0492 0.0002 0.0408 –0.1280 0.0316
Vaccine Proportion 0.0264 –0.0010 0.0407 –0.0513 0.1059

FIGURE A7. Graphical depiction of sensitivity testing results

Historical event comparison

We conducted testing of the disease spread model to assess for concordance of model results with 

historical events. We simulated pandemics using parameter values similar to those reported in the 

scientific literature for historical events, including prior influenza and coronavirus pandemics. 

Here we discuss the validation efforts for the 2009 influenza pandemic and COVID-19. These two 

events occurred in a world that bears a closer resemblance to the world we model and the inherent 

assumptions (e.g., population structure, mobility patterns, medical countermeasures) are more 

applicable than for earlier pandemics.

For the 2009 influenza pandemic, we compared mortality estimates to historical estimates 

found in the scientific literature (Dawood et al., 2012). Results are shown in Figure A8. Given the 

probabilistic nature of confidence intervals, it is expected that some model estimates would fall 

outside of the ranges recorded, and this was found to be the case particularly for lower income 

countries like Afghanistan. This may be due to incomplete surveillance of influenza-related 

mortality in those locations.
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FIGURE A8. Model comparison of influenza-related deaths to historical  
estimates for the 2009 influenza pandemic in select countries. Historical  

estimates from (Dawood et al., 2012)

To assess the temporal progression of the 2009-like pandemic simulation, we compared the timing 

of the peak incidence to historical event data (Archer et al., 2009; Centers for Disease Control and 

Prevention, 2010; Choudhry et al., 2012; Echevarría-Zuno et al., 2009; Infectious Disease Surveillance 

Center (Japan), 2012; Merler et al., 2011; Oliveira et al., 2009; Tizzoni et al., 2012). In this comparison, 

we found that the timing of the modeled peak incidence for the 2009 pandemic showed good 

agreement to historical data (Figure A9). During this simulation, most countries experienced their 

highest number of symptomatic cases within a few weeks of historic estimates. This suggests the 

human mobility network and disease transmission processes within the model portray rates of 

disease spread in a realistic fashion. The slight delay from the model could result from assumptions 

on the spark timing of the event, transmissibility reduction due to seasonality, or temporal biases in 

case ascertainment.
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FIGURE A9. Week of peak symptomatic cases, 2009 influenza pandemic

Results from a model fitting and comparison exercise we performed for the COVID-19 pandemic 

is reported elsewhere (Oppenheim et al., n.d.; United Nations, 2021). This comparison showed 

reasonable agreement of event trajectory and magnitude of estimates between modeled and 

historical data.

Historical benchmarking

Policymakers and planners also tend to benchmark modeled losses against historical experience. 

We therefore estimated the exceedance probabilities (EPs) of historical events based on our 

modeled EPF, to estimate these events’ contemporary probability of occurrence (Table A13). 

To perform this analysis, we obtained reported mortality data from notable historical epidemics, 

estimated the proportion of the global population these deaths represented at the time of the event, 

and then calculated the number of deaths that the same proportion would represent for the 2020 

global population (United Nations, Department of Economic and Social Affairs, Population Division, 

2022). The mortality estimate for each event was then used in conjunction with our EPF to estimate 

the EP value and extrapolated to the 10-year cumulative EP (CEP) based on the formula provided in 

the main text.



ESTIM ATED FUTURE MORTALIT Y FROM PATHOGENS OF EPIDEMIC 

AND PANDEMIC POTENTIAL

61

For historical benchmarking, unlike most of the estimates presented elsewhere in this chapter 

and supplementary materials, we used our modeled Reported Catalog, rather than the Total 

Direct Catalog. We take this approach for historical benchmarking because historically reported 

information is more directly comparable to the Reported Catalog rather than the Total Direct Catalog.

TABLE A13. Estimated exceedance probabilities (EPs) for notable historical 
respiratory epidemics & pandemics

Event (Years) Global Reported 
Deaths 

(Thousands) 
(Madhav et al., 

2017)

Global Reported 
Deaths, 

Adjusted to 
2020 Population 

(Thousands)

Global 
Reported 

Deaths 
(% mortality)

Annual 
EP

10-Year 
EP

SARS (2003) 0.774 0.944 0.00001% 8–9% 57–61%
COVID-19 
(2019–2022)

6,500 6,500 0.08% 2–3% 18–26%

1957 Influenza 
Pandemic 
(1957–1958)

700–1,500 1,872–3,978 0.02%–0.05% 3.5–5.0% 30–40%

1968 Influenza 
Pandemic 
(1968–1970)

1,000 2,184 0.03% 4.4–4.8% 36–39%

2009 Influenza 
Pandemic 
(2009–2010)

152–576 156–624 0.002%–0.01% 6–7% 46–52%

1918 Influenza 
Pandemic 
(1918–1920)

20,000–100,000 86,580–432,900 1.11%–5.55% <0.001% <1%
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Annex B. Country regional groupings
TABLE B1. Country regional groupings

Central and 
Eastern Europe

Central Asia China India Latin America 
and Caribbean

Middle East and 
North Africa

North Atlantic Sub-Saharan 
Africa

Western Pacific 
and Asia

Albania Afghanistan Argentina Algeria Austria Angola Australia
Armenia Azerbaijan Bahamas, The Bahrain Belgium Benin Bangladesh
Belarus Kazakhstan Barbados Egypt, Arab Rep. Canada Botswana Bhutan
Bosnia and 
Herzegovina

Kyrgyz 
Republic

Belize Iran, Islamic Rep. Cyprus Burkina Faso Brunei 
Darussalam

Bulgaria Mongolia Bolivia Iraq Denmark Burundi Cambodia
Croatia Pakistan Brazil Israel Finland Cabo Verde Fiji
Czech Republic Tajikistan Chile Jordan France Cameroon Indonesia
Estonia Turkmenistan Colombia Kuwait Germany Central African 

Republic
Japan

Georgia Uzbekistan Costa Rica Lebanon Greece Chad Korea, Dem. 
People’s Rep.

Hungary Cuba Libya Iceland Comoros Korea, Rep.
Latvia Dominica Morocco Ireland Congo, Dem. 

Rep.
Lao PDR

Lithuania Dominican 
Republic

Oman Italy Congo, Rep. Malaysia

Moldova Ecuador Qatar Luxembourg Cote d’Ivoire Maldives
Montenegro El Salvador Saudi Arabia Malta Djibouti Myanmar
North 
Macedonia

Guatemala Syrian Arab 
Republic

Netherlands Equatorial 
Guinea

NA

Poland Guyana Tunisia Norway Eritrea Nepal
Romania Haiti Turkey Portugal Eswatini New Zealand
Russian 
Federation

Honduras United Arab 
Emirates

Spain Ethiopia Papua New 
Guinea

Serbia Jamaica West Bank and 
Gaza

Sweden Gabon Philippines

Slovak Republic Mexico Yemen, Rep. Switzerland Gambia, The Singapore
Slovenia Nicaragua United 

Kingdom
Ghana Solomon Islands



ESTIM ATED FUTURE MORTALIT Y FROM PATHOGENS OF EPIDEMIC AND PANDEMIC POTENTIAL 71

Central and 
Eastern Europe

Central Asia China India Latin America 
and Caribbean

Middle East and 
North Africa

North Atlantic Sub-Saharan 
Africa

Western Pacific 
and Asia

Ukraine Panama United States Guinea Sri Lanka
Paraguay Guinea-Bissau Thailand
Peru Kenya Timor-Leste
Puerto Rico Lesotho Tonga
Suriname Liberia Vanuatu
Trinidad  
and Tobago

Madagascar Vietnam

Uruguay Malawi
Venezuela, RB Mali

Mauritania
Mauritius
Mozambique
Namibia
Niger
Nigeria
Rwanda
Senegal
Seychelles
Sierra Leone
Somalia
South Africa
South Sudan
Sudan
Tanzania
Togo
Uganda
Zambia
Zimbabwe

Note:	This	grouping	may	be	subject	to	change	in	future	revisions	of	this	paper.

TABLE B1. (Continued)
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