Machine learning
Main content
The Machine Learning pillar focuses on fundamental principles and algorithms for machine learning and artificial intelligence. Our core competences lie in probabilistic graphical networks, learning ontologies, topological data analysis and artificial neural networks. This includes structure learning, inference, approximation algorithms, uncertainty quantification, model validation, and prediction. Group members have experience from basic research on foundational questions in the theory of machine learning all the way to algorithm implementation and machine learning applications. Our group members publish at the most prestigious international venues within artificial intelligence. We actively collaborate with the algorithms, statistics, visualization, and bioinformatics pillars.